” Allied Vision

APPLICATION NOTE

File Access Control - Reading and Writing

. q V1.0.0
User Data in Alvium Flash Memory 2025-1ul-21

Table of contents

INEFOAUCTION 1ttt ettt et e e et e et e et e e e ab e e e bt e e e bt e e eabe e e bt eeetbeeeabe e e teeeeabeeeabe e et 1
File aCCeSS IN VIMDA X VIBWET ...ttt sttt ens 2
WVEIEING USEE DAT@ ..iiiiiiiiii it e e e e e e e s ettt e e e e e e e e s et bbbt e e e e e e e s sasabbabeeaeeeessnabanseeas 2
REAAING USEI DATA ...viiiiiiiiiiie ettt ettt ettt et e e ettt e et e et e e et e e et e e eate e eataeeeane s 5
File 2CCESS WIth VIMDa Gttt ettt ettt e bttt esbe st st e sbe st et e sbeenaeneeeeas 5
(@ o1 1Y =48 {1 LT USSR 6
Opening User Data in REAA MOAEoiiie e 7
Opening User Data in WIIte MOGEiiiiiiiciee e 8
DB EEINE FIES ettt ettt e ettt 9
REAAING QUL USEI Dal@..uuiiiiiiiiiiiiiiiie ittt ettt ettt ettt e b e et e e s b e e et e e enbe e e aseeeabe e e 10
R AT AT =TT I 12
CONTACT US oottt ettt et e et e e et e ettt e ettt e e 14
VAV Z=Y T L= =T o 1 F= 14
(O ol TSP P TS PPRPPR 14
Liability, trademarks, and COPYIIBNTiiiiiiiie ettt e eve e aae e 14
Introduction

This application note gives a basic overview on how to use the File Access Control features to write and
access User Data in the flash memory of Alvium cameras. The first focus will be using Vimba X Viewer,
followed by C++ code using the Vimba X SDK.

Page 1 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

File access in Vimba X Viewer

Writing User Data

Writing User Data to the flash memory will always append to the already written User Data. The write
pointer cannot be changed, except if the file was deleted. In this example, there is no User Data in the
flash memory yet, so the pointer is at O. First, the features FileOperationSelector, FileOpenMode and
FileSelector need to be set as shown in the screenshot.

=!I FileAccessControl

Click here to open

File Open Mode Write

File Operation Execute [COMMAND]
File Operation Result 0

File Operation Selector Open
File Operation Status Success
None

File Selector UserData
0
F Open

Figure 1 - Feature Selection for Write Operation

After completing these settings, the feature FileOperationExecute needs to be executed.
- FileAccessControl i

{* Execute...

File Open Mode
File Operation Execute [COMMAND] <:| |]

Figure 2 - Execute Command Feature "FileOperationExecute"

Now that the file is open for writing, the next operation to be selected in the FileOperationSelector is
to Write to make the FileAccessBuffer accessible.

Page 2 of 14

” Allied Vision

=, FileAccessControl
File Access Buffer
File Access Length

Click here to open

1024

File Access Offset 0

File Open Mode

File Operation Execute [COMMAND]
File Operation Result 0

File Operation Selector Write

File Operation Status Success

File Process Status None

File Selector UserData

File Size 0

File Status Open

Using File Access with Alvium Cameras

Figure 3 - Set FileOperationSelector to Write and open the FileAccessBuffer

Clicking on Click here to open opens the integrated Raw Data Editor, where you can see the HEX and ASCI|
values of the buffer. After editing the HEX values, click the save icon and close the buffer editor.

20
00
00
00
00
00
20
00
00
00
00
21
00
00
00
00
00
00

S7
00
00
00
00
00
57
00
00
00
00
00
00
00
00
00
00
00

6f
00
00
00
00
00
6f
00
00
00
00
00
00
00
00
00
00
00

72
00
00
00
00
00
72
00
00
00
48
00
00
00
00
00
00
00

éc
00
00
00
00
00
6c
00
00
00
€5
00
00
00
00
00
00
00

64
00
00
00
00
00
64
00
00
00
6c
00
00
00
00
00
00
00

21
00
00
00
00
00
21
00
00
00
6c
00
00
00
00
00
00
00

21
00
00
00
00
00
21
00
00
00
6f
00
00
00
00
00
00
48

21
00
00
00
00
00
21
00
00
00
20
00
00
00
00
00
00
€5

00
00
00
00
00
00
00
00
00
sls}
ST
00
00
00
00
00
00
6c

00
00
00
00
00
00
00
00
00
00
6f
00
00
00
00
00
00
6c

Figure 4 - Edit the Values of the FileAccessBuffer in the Raw Data Editor

Once the data in the buffer is complete, the buffer can be written into the camera memory. For that, after
closing the Raw Data Editor, if none of the features have been changed in the meantime, only
FileOperationExecute needs to be executed. If your data does not need the 1024 bytes of the buffer,
you can limit the amount of buffer written into the camera, by editing FileAccessLength. Every ASCII
sign should take up one byte, so for “Hello World!” your FileAccessLength should be 12.

e File Operation Execute
File Access Buffer
File Access Length
File Access Offset (’. S
File Open Mode
File Operation Execute [COMMANDI l I

Figure 5 - Execute the Write Operation to write the Buffer into the Camera Memory

Page 3 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

: FileAccessControl
File Access Buffer Click here to open
File Access Length 12
File Access Offset 0

File Open Mode

File Operation Execute [COMMAND]

Figure 6 - For smaller Data, use FileAccessLength to only write the Amount needed

To check if the Write operation was successful, FileOperationStatus can be checked for Success and

FileSize can be checked to see if the number matches the FileAccessLength plus the previous size

and if FileOperationResult matches the FileAccessLength.

=} FileAccessControl
File Access Buffer Click here to open
File Access Length 12
File Access Offset 12

File Open Mode

File Operation Execute [COMMAND]

I File Operation Result 12

File Operation Selector Write

I File Operation Status Success I
File Process Status None
File Selector UserData

I File Size 12 I

File Status Open

Figure 7 - Indicators to check if Write Operation was successful

Note: The write pointer can be reset only by deleting the file, power cycling the camera is not enough.

If the file is not closed, the User Data is not saved into the camera.

=1 FileAccessControl
File Access Buffer
File Access Length
File Access Offset
File Open Mode
File Operation Execute
File Operation Result

File Operation Selector

| * Execute...
[COMMAND]
0
Close

Figure 8 - If the File is not closed, close it with these two Selections before reading it

Page 4 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

Reading User Data

If the FileStatus is not Closed, then close the file first, before opening it in Read mode. To do that
select Close in the FileOperationSelector and execute the FileOperationExecute command. Now
that the file is for sure closed, open it in Read mode, by selecting the following features and values as
shown in the screenshot and executing the FileOperationExecution command.

= FileAccessControl
File A ' Click here to open

File Open Mode Read

File Operation Execute [COMMAND]
File Operation Result 0

File Operation Selector Open

Success

None

b4

File Selector UserData
File S 12
Closed

Figure 9 - Open UserData in Read Mode

Next, the opened file needs to be loaded into the FileAccessBuffer with a Read operation. Select Read
for the FileOperationSelector feature and execute the FileOperationExecution command. Clicking
to open the Raw Data Editor will now show the User Data that was loaded from the camera.
Fi)
File Edit
=
0000 48 65 6c 6c 6f 20 57 &f 72 6c 64 21 £ff £f £ff ff | Hello World!.... -
0010 f£f £f £f £f £f £f £f £f £f £f £f ££f £f ££f £Ff £ | v vvvnnnnnnnnnn.

Q020 ff ff £f £f £f £f £ff £ff £f £ff £ff £f £f £ff £f £f |0
Q030 ff ff £f £f £f £f £ff £ff £f £ff £ff £f £f £ff £f £f | 00t

Figure 10 - UserData is successfully read out from the Camera Flash Memory

File access with Vimba C++

Of course, Vimba C++ SDK uses the same features as shown in the GUI of the Vimba X Viewer, so this
section is to summarize possible implementations of functions that close, open, read, write and delete
User Data from the camera flash memory. If you would like to see the example program that these code
snippets are based on, please contact support@alliedvision.com. The example is named

UserData_FileAccess.cpp.

Page 5 of 14

mailto:support@alliedvision.com

. - Using File Access with Alvium Cameras
” Allied Vision

Closing files

To do anything with the files, it is important to open them in the right mode. Therefore, any function that
opens the file should first check that it is closed and close it if necessary. It is also best practice to close the
file after each write and read action to make sure that the file was written correctly in case of a program
crash or the camera being physically disconnected and that there is no confusion about the state of the
file.

void close_file(CameraPtr cam){
VmbError_t err;
FeaturePtr pFeature;
string stringVal;
// Check if the file is closed
cam->GetFeatureByName("FileStatus", pFeature);

err = pFeature->GetValue(stringval);

if (stringVal == "Closed") {
cout << "File is already closed." << endl;
}
else {
cam->GetFeatureByName("FileOperationSelector", pFeature);
err = pFeature->SetValue("Close"); // Select “Close” as operation
cam->GetFeatureByName("FileOperationExecute", pFeature);
err = pFeature->RunCommand(); // Execute the selected operation
}

Page 6 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

Opening User Data in Read Mode

The file can only be opened if it is not already opened. Therefore, it is important to check for the file status
before trying to open it, to ensure that the right file is opened in the right mode.

Void open_UserData_r(CameraPtr cam){
VmbError_t err;
cam->GetFeatureByName("FileSelector", pFeature);
err = pFeature->SetValue("UserData"); // Select UserData file
// Check if selected file is opened, if yes close file
cam->GetFeatureByName("FileStatus", pFeature);
err = pFeature->GetValue(stringval);
if (stringVal == "Open") {

close _file(cam);

cam->GetFeatureByName("FileOperationSelector", pFeature);

err = pFeature->SetValue("Open"); // Select “Open” as operation
cam->GetFeatureByName("FileOpenMode", pFeature);

err = pFeature->SetValue("Read"); // Select “Read” as mode
cam->GetFeatureByName("FileOperationExecute", pFeature);

err = pFeature->RunCommand(); // Execute the selected operation

Page 7 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

Opening User Data in Write Mode

void open_UserData_w(CameraPtr cam){
VmbError_t err;
FeaturePtr pFeature;
string stringVal;
cam->GetFeatureByName("FileSelector", pFeature);
err = pFeature->SetValue("UserData"); // Select UserData file
// Check if selected file is opened, if yes close file
cam->GetFeatureByName("FileStatus", pFeature);
err = pFeature->GetValue(stringval);
if (stringVal == "Open") {
close _file(cam);
}
cam->GetFeatureByName("FileOperationSelector", pFeature);
err = pFeature->SetValue("Open"); // Select “Open” as operation
cam->GetFeatureByName("FileOpenMode", pFeature);
err = pFeature->SetValue("Write"); // Select “Write” as mode
cam->GetFeatureByName("FileOperationExecute", pFeature);

err = pFeature->RunCommand(); // Execute the selected operation

Page 8 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

Deleting files

void delete file(CameraPtr cam) {

VmbError_t err = 0;

FeaturePtr pFeature;

string stringVal;

VmbInt64_t nFileSize = 0;

err = close_file(cam); // Close file before deleting

cam->GetFeatureByName("FileStatus", pFeature);

err = pFeature->GetValue(stringVval);

if (stringVal == "Closed") { // Check if FileStatus is “Closed”
cam->GetFeatureByName("FileOperationSelector", pFeature);
err = pFeature->SetValue("Delete"); // Select “Delete” as mode
cam->GetFeatureByName("FileOperationExecute", pFeature);
err = pFeature->RunCommand(); // Execute the selected operation
cam->GetFeatureByName("FileSize", pFeature);
pFeature->GetValue(nFileSize);
if (nFileSize == @) { // Check if FileSize is ©

cout << "File deleted." << endl;

}
else {
cout << "Delete error: File size is not zero." << endl;

}
}
else {

cout << "Delete error: File was not closed successfully.” << endl;
}

Page 9 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

Reading out User Data

The size of the file access buffer is only 1024 bytes maximum. So, if the file size of the User Data is larger
than that, the file needs to be read out in several steps. This can be done by editing the feature
FileAccessOffset. For example: First read out the first 1024 bytes and save it into a variable. Then set
FileAccessOffset to 1024, read out more of the file and add it to your existing variable. This example
code does not take larger file sizes into account, but that can be changed easily by for example making the
offset an argument of the function.

UcharVector read _UserData(CameraPtr cam){

VmbError_t err;

FeaturePtr pFeature;

UcharVector UserData;

VmbInt64 t nFileSize = 9;

string stringVval;

err = open_UserData_r(cam); // Open file in read mode

cam->GetFeatureByName("FileSize", pFeature);

pFeature->GetValue(nFileSize); // Check file size

if (nFileSize > @) {
cam->GetFeatureByName("FileOperationSelector", pFeature);
err = pFeature->SetValue("Read"); // Select “Read” as operation
cam->GetFeatureByName("FileAccesslLength", pFeature);
// Set file access length depending on file size
if (nFileSize > 1024)

{
pFeature->SetValue(1024);
}
else {
pFeature->SetValue(nFileSize);
}

cam->GetFeatureByName("FileAccessOffset", pFeature);
pFeature->SetValue(@); // Select @ as file access offset
cam->GetFeatureByName("FileOperationExecute"”, pFeature);

err = pFeature->RunCommand(); // Execute the selected operation
cam->GetFeatureByName("FileOperationStatus", pFeature);
pFeature->GetValue(stringval);

if (stringVal == "Success"){ // Check for read success

cam->GetFeatureByName("FileAccessBuffer", pFeature);

Page 10 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

// Read out buffer into variable UserData

pFeature->GetValue(UserData);

}
}
else {

cout << "Can't read UserData, file size is 0." << endl;
}

close_file(cam); // Close file after reading -> good practice

return UserData;

int main(){

UcharVector file_access_buffer;

file_access_buffer = read_UserData(cam);

for (int i = @; i < file_access_buffer.size(); i++){

cout << file_access_buffer[i];

Page 11 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

Writing User Data

By default, the write operation will append the data in the file access buffer to the existing data. Modifying
the data can only be achieved by reading it out, modifying it, deleting the old file, and writing the modified
file on the camera. This example includes an argument to differentiate between add and overwrite.

UcharVector write_UserData(CameraPtr cam, UcharVector UserData,
bool overwrite = false) {
VmbError_t err;
FeaturePtr pFeature;
VmbInt64 t nFileSize = 9;

VmbInt64_t nDataSize = 0;
string stringVval;

nDataSize = UserData.size();
if (nDataSize > 0)

{

// Overwrite current file on camera

if (overwrite == true) {
err = delete _file(cam); // Closes and deletes file
err = open_UserData_w(cam); // Open file in write mode
cam->GetFeatureByName("FileOperationSelector"”, pFeature);
err = pFeature->SetValue("Write"); // Select “Write”
cam->GetFeatureByName("FileAccessLength", pFeature);

// Write only as much memory, as needed for data (recommended)
err = pFeature->SetValue(nDataSize);
cam->GetFeatureByName("FileAccessBuffer", pFeature);
err = pFeature->SetValue(UserData); // Load into buffer
cam->GetFeatureByName("FileOperationExecute", pFeature);
err = pFeature->RunCommand(); // Execute write operation
// Optional: Check file size for successful write
cam->GetFeatureByName("FileSize", pFeature);

pFeature->GetValue(nFileSize);

else {

// Add to current file on camera

err = close_file(cam);
err = open_UserData _w(cam); // Open file in write mode

cam->GetFeatureByName("FileOperationSelector"”, pFeature);

Page 12 of 14

. - Using File Access with Alvium Cameras
” Allied Vision

err = pFeature->SetValue("Write"); // Select “Write”
cam->GetFeatureByName("FileAccessLength", pFeature);
err = pFeature->SetValue(nDataSize);
cam->GetFeatureByName("FileAccessBuffer", pFeature);
// Write only as much memory, as needed for data (recommended)

err = pFeature->SetValue(UserData);

cam->GetFeatureByName("FileOperationExecute", pFeature);

err = pFeature->RunCommand(); // Execute write operation

}
}
else {

cout << "Data is empty, no data was written." << endl;
}

close_file(cam); // Close file after writing -> necessary!
return UserData;

}

int main(){

// Write data in ASCII as string, to be formatted into UcharVector

UcharVector new_UserData;
VmbUchar_t temp;
// Separate string into VmbUchar and stack them into a UcharVector
for (int i = @; i < stringBaseData.length(); i++){
temp = (VmbUchar_t)stringBaseData[i];
new_UserData.push_back(temp);

}

write_UserData(cam, new_UserData, true); // Write new data into camera

Page 13 of 14

” Allied Vision

Contact us

Website, email

General
www.alliedvision.com/en/contact

info@alliedvision.com

Distribution partners

www.alliedvision.com/en/avt-locations/avt-distributors

Support
www.alliedvision.com/en/support

Using File Access with Alvium Cameras

www.alliedvision.com/en/about-us/contact-us/technical-support-repair-/-rma

Offices

Europe, Middle East, and Africa (Headquarters)

Allied Vision Technologies GmbH
Taschenweg 2a

07646 Stadtroda, Germany

T// +49 36428 677-0 (Reception)
T// +49 36428 677-230 (Sales)
F// +49 36428 677-28

Asia-Pacific | China

Allied Vision Technologies Shanghai Co Ltd.
B-510, Venture International Business Park
2679 Hechuan Road

Minhang District, Shanghai 201103
People's Republic of China

T// +86 21 64861133

Singapore

Allied Vision Technologies Asia Pte. Ltd
82 Playfair Rd, #07-01 D'Lithium
Singapore 368001

T// +65 6634 9027

North, Central, and South America, Canada
Allied Vision Technologies Canada Inc.

300 - 4621 Canada Way

Burnaby, BC V5G 4X8, Canada

T// +1 604 875 8855

USA

Allied Vision Technologies, Inc.
102 Pickering Way - Suite 502
Exton, PA 19341, USA
Toll-free// +1-877-USA-1394
T//+1 978 225 2030

Japan

Allied Vision Technologies
Yokohama Portside Bldg. 10F

8-1 Sakae-cho, Kanagawa-ku
Yokohama-shi, Kanagawa, 221-0052
T// +81 (0) 45 577 9527

Liability, trademarks, and copyright

Allied Vision has tested the product under the described conditions. The customer assumes all risk of product damage, application

compromise or potential failure, and Sales Warranty loss related to deviation from the described conditions. Allied Vision's

acknowledgement of such deviations in the customer's modified product or applications does not constitute advice for use. No

Warranty is offered or implied by Allied Vision regarding the customer's assumed risk or legal responsibilities with such modified

products or applications.

All text, pictures, and graphics are protected by copyright and other laws protecting intellectual property. All content is subject to

change without notice. All trademarks, logos, and brands cited in this document are property and/or copyright material of their

respective owners. Use of these trademarks, logos, and brands does not imply endorsement.

Copyright © 2025 Allied Vision Technologies GmbH. All rights reserved.

Page 14 of 14

https://www.alliedvision.com/en/contact
https://www.alliedvision.com/en/contact
mailto:info@alliedvision.com
https://www.alliedvision.com/en/avt-locations/avt-distributors/
https://www.alliedvision.com/en/support
https://www.alliedvision.com/en/support
https://www.alliedvision.com/en/about-us/contact-us/technical-support-repair-/-rma

	Introduction
	File access in Vimba X Viewer
	Writing User Data
	Reading User Data

	File access with Vimba C++
	Closing files
	Opening User Data in Read Mode
	Opening User Data in Write Mode
	Deleting files
	Reading out User Data
	Writing User Data

	Contact us
	Website, email

	Offices
	Liability, trademarks, and copyright

