:.r:"i chromasens

Imaging for Professionals

CS-3D-Api | Manual

CD40083 Version E27

Table of Contents

CS-3D-Api | Manual

1 About Chromasens

1.1
1.2

Contact Information
Support

2 General Information

2.1

2.2
23

Software Requirements

2.1.1 Windows

2.1.2 Linux

Hardware Requirements
Recommended System

3 Remarks on CS-3D-API for Linux

3.1

Known Issues on Linux

4 Getting Started

4.1
4.2
4.3
4.4

4.5
4.6

4.7

Installation on Windows Platform
Installation on Linux Platform

Sample Images

Example Programs

4.41 Building Sample Programs on Linux
Extensions

Calculation Speed

4.6.1 RAM/PCI-E Bandwidth of PC
4.6.2 Calculation Power / Count of GPUs
4.6.3 How to use the API for Highest Speed
CS-3D-API Overview

5 Api-Wrapper for C#

6 Api - Function List

6.1
6.2

6.3

CS-3D-Api

Create API Object
Initialization

6.2.1 initialize

6.2.2 reinitialize
6.2.3 getDemoMode
6.2.4 setDemoMode
Configuration

6.3.1 getConfig

:.r" chromasens

Imaging for Professionals

~ b W NDNDNDNNDN -

(o226, IS IS IS |

11
11
11
11
12

13

14
14
14
14
15
15
16
16
16

6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10

setConfig

loadConfig

saveConfig
getActiveConfig
saveActiveConfig
loadConfigFromCamera
saveConfigToCamera
saveCalibration
freeConfig

6.4 Image Loading

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18

setSrcimglinfo
setSrcimgPtr
setimageMask
getLoadingEventForSource
acquirelmages
blockUntilFetchableResultReady
getResult

freeResult
blockUntillmagelsLoaded
setSrcimglLoaded
getSrclmgStatus
getSrclmgChannelOrder
setSrcImgChannelOrder
getRoi

setRoi

moveRoi
enableRoiCalculation
disableRoiCalculation

6.5 Calculation Process

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11

start

stopBlocking
getDestimginfo
getNextimgBlocking
cancel

getLastlmage
freeDestimage
rawlmageCoordsTo3D
rectimageCoordsTo3D
rawlmageCoordsToRectCoords
grayTo3D

6.6 Miscellaneous

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7

CS-3D-Api

getVersion
isStarted
isInitialized
grayToMm
dispToMm
mmToDisp
setSrcimglndex

]
7z chromasens

7.

o

17
17
18
19
20
21
21
22
22
22
23
23
23
24
24
25
25
26
26
26
27
27
28
28
29
29
30
30
30
30
31
31
32
32
33
36
36
38
39
40
42
42
42
43
43
44
45
46

l T

“# chromasens

a | Imaging for Professionals
l..
6.6.8 getApiMemorylnformation
6.6.9 verifyCalibration
6.6.10 adjustCalibration
6.6.11 errorToString

6.6.12 staticCalibration

7 HALCON - Extension
7.1 HALCON - Operator List
7.1.1 Control
7.1.2 Configuration
7.1.3 Calculation
7.1.4 Miscellaneous
7.2 .NET/C++ Version of HALCON extension

8 Image Format
8.1 Source Image Format
8.1.1 Single Channel Image
8.1.2 3-Channel Image
8.1.3 Select Single Channel of 3-Channel Image for Processing
8.2 Destination Image Format
8.2.1 Rectified Image - IMG_OUT_R*/ IMG_OUT_B*/ IMG_OUT_GRAY

46
47
47
48
49

50
50
50
50
54
59
60

61
61
61
61
61
62
63

8.2.2 8 bit-/16 bit— Height Map Image - IMG_OUT _DISP / IMG_OUT DISP_8BIT 63

8.2.3 Point Cloud - IMG_OUT_P3D

8.2.4 8 bit -/ float — Confidence Map Image - IMG_OUT_CONF_8BIT /
IMG_OUT_CONF_FLOAT

8.3 Central View / Perspective Correction

9 Image Size

10 Configuration
10.1 Configuration via API
10.2 Parameter Descriptions
10.2.1 General Parameters
10.2.2 Control parameters
10.2.3 Calculation Specific Parameters
10.3 System Parameters

11 Using the API

11.1 Initialization
11.1.1 Example

11.2 Loading Process
11.2.1 Manual Loading Process
11.2.2 Convenience Loading Process
11.2.3 Loading Mask Image Data

11.3 Calculation Process
11.3.1 Example

11.4 Demo-mode

65

65
66

68

69
69
69
69
71
74
75

76
78
79
81
82
83
84
85
85
87

CS-3D-Api

12

13

14

15

Compatible Video Cards

Errorcodes
13.1 C++

13.2 LabVIEW
13.3 HALCON

Frequently Asked Questions

14.1 What does Calculation Speed Depend on
14.2 How to Increase the Calculation Speed
14.3 How to Use Multiple GPUs

14.4 How to Generate a Debug Log

14.5 Support Information

Additional remarks

CS-3D-Api

o4
% chromasens

5

88

89
89
94
96

97
97
97
97
98
98

99

:.r" chromasens

L
. Imaging for Professionals
-

1 About Chromasens

The name of our company, Chromasens, is a combination of ‘chroma' which means color, and
'sens' which stands for sensor technology.

Chromasens designs, develops and produces high-quality and user-friendly products:
B Line scan cameras
B Camera systems
B Camera illumination systems
B Image acquisition systems

B Image processing solutions

Today Chromasens GmbH is experiencing steady growth and is continually penetrating new
sales markets around the globe. The company's technologies are used, for example, in
products and for applications such as book and document scanners, sorting systems and
inspection systems for quality assurance monitoring.

Customers from all over the world from a wide range of industrial sectors have placed their
trust in the experience of Chromasens in the field of industrial image processing.

1.1 Contact Information

Chromasens GmbH
Max-Stromeyer-Str. 116
78467 Konstanz

Germany

Phone: +49 (0) 7531 / 876-0
Fax: +49 (0) 7531/ 876-303

Email: info@chromasens.de

1.2 Support

Chromasens GmbH
Max-Stromeyer-Str. 116

78467 Konstanz

Germany

Telefon: +49 (0) 7531 / 876-500
Fax: +49 (0) 7531 / 876-303
Email: support@chromasens.de

Visit our website at http://www.chromasens.de which features detailed information on our
company and products.

CS-3D-Api 1

mailto:info@chromasens.de
mailto:support@chromasens.de
http://www.chromasens.de/

| T

u-"i chromasens

.
a Imaging for Professionals
.
n
w

2 General Information

The CS-3D-Api is a C++ library which provides you with functions to calculate 3D information
in a fast and scalable manner. Through the vast availability of CUDA capable gaming video
cards, which are relatively inexpensive, we can speed up the computation drastically. If you
need higher speed you can simply add another video card to your computer.

As input images, one or two RGB/BGR/GRAY images from a stereo imaging system are
required. Additional calibration file has to be provided which includes mainly the external and
internal camera parameters.

The CS-3D-Api calculates a rectified RGB/BGR/GRAY-image or/and an 8-/16-bit height map
image or/and a point cloud.

The CS-3D-Api is available for both Windows and Linux operating systems.

2.1 Software Requirements

2.1.1 Windows
- System
o Windows 8.1, Windows 10, Windows 11 x64
NVidia Driver Version 551.76 or later

- For examples only:

o Development Environment
= Microsoft Visual Studios 2010 or newer.
= MFC
o OpenCV - Library v4.0 or newer
For the HALCON extension:
o HALCON 21.11, 22.05, 22.11 and 23.11 are supported

2.1.2 Linux
System

o Linux Ubuntu 16.04.06, 20.04.06 LTS x64
- NVidia Driver Version 440.33 or later

o Important:
It is required to have both the NVidia drivers and the CUDA library installed.

For example: Install with sudo apt install nvidia-450

- For examples only:
o Development environment (build-essential package)
o CMake 3.20 or higher
o OpenCV - Library v4.0

2.2 Hardware Requirements

- CUDA 3.5 capable GPU hardware (see our compatibility list) with at least 1.5 GB RAM
- Quad Core >2,4 GHz

- Ram>8 GB

- Power-supply with enough power for the GPU(s)

2 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
-

2.3 Recommended System

- Software
o Windows 10 or Windows11
o For examples only:
» Microsoft Visual Studios 2015 or newer
= MFC
= OpenCV - Library v4.0 or newer

- Hardware

To recommend the best GPU for the system, it's generally true that newer and more
expensive models (which generally has more cuda cores and larger memory) offer better
performance. Ultimately, the choice of GPU depends on the customer's specific needs and
budget constraints. While a more powerful GPU like the Nvidia RTX 5090 may offer improved
performance, it's essential to balance this with the associated costs and ensure that the
selected GPU meets the required specifications and budgetary requirements. (Please note
that latest RTX 5090, which is released in January 2025, has not been tested and therefore its

compatibility is not guaranteed.)
We have extensively tested and validated the latest setup with the following specifications:
o NVidia RTX 4090 24GB RAM
o Inteli9 3,2 GHz
o 64 GBRAM
o Chromasens 3DPIXA stereo camera system

CS-3D-Api

u-"i chromasens

Imaging for Professionals

3 Remarks on CS-3D-API for Linux

3.1

Please note that the current Linux version of the CS-3D-Api software is still a “Beta” state.

If you encounter problems with the software, please send us a bug report with the following
information:

- The version of the 3D-API you are running
- The log output, on Linux the log will be shown in the console window.

- A description of the system you are running the 3D-API on, including operating system
version and the used GPU hardware

- A short description of the issue that occurred
Please send the report to the following address:

support@chromasens.de

The contents of the CS-API software package for Linux are different from the software
package for Windows:

Component / Feature Windows Linux
CS-3D-Api Yes Yes
CS-3D-Api Samples Yes Yes (partly)
Sample Data Yes Yes
3D-Viewer Yes No
Software Manager Yes No
Configuration from file Yes Yes
Configuration from camera Yes No
Calibration Verification Yes No

Halcon & LabVIEW extensions Yes No

Known Issues on Linux

There are existing known issues in the software as listed below:

1.) Sample data is currently placed inside the installation folder, which is
/opt/Chromasens/3D. To actually modify the examples it is required to copy the contents
of the “examples” folder to a location where the user has write permissions, for example
~/Chromasens/3D/examples.

2.) The CUDA library needs to be installed manually. This is not an issue but for convenience
it would be better to have that step done automatically. Please refer to the installation
steps for Linux in chapter 4.2 for more information.

CS-3D-Api

mailto:support@chromasens.de

" Imaging for Professionals

chromasens

4 Getting Started

4.1

4.2

4.3

Installation on Windows Platform

1) Execute the cs-3d-setup-vX.Y.exe and install the software to the desired directory.

2) During the installation process the availability of NVidia driver and its version will be
checked. The current driver for NVidia GPUs can be downloaded at
http://www.nvidia.de/drivers. Besides, the VS2015 redistributables will be installed.

Installation on Linux Platform

As a first step of preparation, please make sure the latest NVidia drivers and the CUDA library
are installed. Please refer to the software requirements in chapter 2.1.2. For example, to install
the NVidia drivers and CUDA library version 450, execute the following command:

sudo apt install nvidia-450

On Linux the CS-3D software package consists of the following components:
- CS3D-{version}.deb

This is a debian software package which contains the CS-3D-Api shared library with
corresponding headers as well as sample images and source code.

To install the CS-3D software package, please execute the following steps:
1.) Download and extract the CS-3D software package.
2.) Install the Debian package with the command
a. sudo apt-get install ./CS3D-{version}.deb
3.) The package will be placed in the following location and folder structure:

/opt/Chromasens/3D/3dapi: CS-3D-Api header files
/opt/Chromasens/3D/bin: Location for pre-built sample executables
/opt/Chromasens/3D/data: CS-3D-Api data folder
/opt/Chromasens/3D/doc: CS-3D-Api documentation
/opt/Chromasens/3D/examples: C++ examples
/opt/Chromasens/3D/lib: CS-3D-Api shared libraries
/opt/Chromasens/3D/samples_images: Sample data with configuration and images
/opt/Chromasens/3D/share: CMake script for finding the API library
Sample Images

To start working with the 3D-Viewer or the API without having the image acquisition running,
we provide a few sample-images in “%PUBLIC%\documents\Chromasens\3D\sample
images\{camera type}” along with the configuration information. The name for the sample
image for the single camera system is AB_XXX.bmp, and for the dual camera system the
names are A_XXX.bmp and B_XXX.bmp.

Please remember to load the matching config.ini from the samples folder before loading the
source files.

CS-3D-Api 5

http://www.nvidia.de/drivers

| T

u-"i chromasens

.
a Imaging for Professionals
.
n
w

4.4 Example Programs

With the CS-3D software example programs written in C++, C# and HALCON scripts are
provided. CS3DApiStandalone and CS3DApiPerformance are also available as precompiled
binary programs. Both can be found in the {appDir}\bins folder. The given example-parameters
are valid if your current work directory is {appDir}\bins and you use the standard install path.

Windows Sample Data Location:
On Windows all sample data including the example programs is located in the following folder:
%PUBLIC%\documents\Chromasens\3D\

Linux Sample Data Location:

On Linux all sample data is located in the installation folder in
Sample data: /opt/Chromasens/3D/sample_images
Examples: /opt/Chromasens/3D/examples

List of Sample Programs:
- examples\C++\CS3DApiStandalone

o This sample calculates the height map, rectified image and point cloud from
given image pair. First the source images are loaded then the result images are
retrieved. The required parameters are passed through command-line.

o Syntax:
CS3DApiStandalone.exe
-a [image from camera A]
-b [image from camera B]
-c [configfile]
--dll [path to CS3DApi64.dll/libCS3DApi64.so including the filename]
[-od [output height map image].png/.tiff]
[-or [output rectified image]]
[-or2 [output second rectified image]]
[-p3d [output point cloud].cs3d]

o e.g.for compact camera images:

CS3DApiStandalone.exe -a
"C:\Users\Public\Documents\Chromasens\3D\sample images\single camera
system\AB_0000.bmp" -c
"C:\Users\Public\Documents\Chromasens\3D\sample images\single camera
system\config.ini" --dll "C:\Program Files\Chromasens\3D\dlIs\CS3DApi64.dIl"
-od "D:\testHeightMap.tiff"

o e.g. for dual camera images

CS3DApiStandalone.exe -a
"C:\Users\Public\Documents\Chromasens\3D\sample images\two camera
system\A_0000.bmp" -b "C:\Users\Public\Documents\Chromasens\3D\sample
images\two camera system\B_0000.bmp" -c
"C:\Users\Public\Documents\Chromasens\3D\sample images\two camera
system\config.ini" --dll "C:\Program Files\Chromasens\3D\dlIs\CS3DApi64.dIl" -
od "D:\testHeightMap.tiff" -or "D:\testRectified.bmp"

6 CS-3D-Api

Raw image (pairs)

o B B

CS-3D-Api

uﬁ chromasens

Imaging for Professionals

examples\C++\CS3DApiPerformance

o This sample records the mean calculation time and throughput time per iteration
by using parallel processing of loading source image pairs and retrieving result
images. The calculation can be done on the whole image or only on a set ROI.

o Result:

» “Whole calculation time” is the time that is needed for the calculation of
given number of images. Starting when an image is passed to the API
stopping when the destination images are ready and copied back.

= “Throughput time” is the “distance” in second between two consecutive
resulting images which the API provides. It can also be interpreted as the
speed of the API.

Calculation time

\
(\

Destination images

=

|

Throughput time

o Syntax:
CS3DApiPerformance.exe
-a [image from camera A]
-b [image from camera B]
-c [configfile]
--dll [path to CS3DApi64.dIl/libCS3DApi64.so including the filename]
-i [number of iterations]
--save [path to save result]
--useroi [0|1]
--roix [x-coordinate of a roi]
--roiy [y-coordinate of a roi]
--roiw [width of roi]
--roih [height of roi]
--usedynamic [0|1]
o e.g. for the whole image calculation without setting roi

CS3DApiPerformance -a "C:\Users\Public\Documents\Chromasens\3D\sample
images\two camera system\A_0000.bmp" -b
"C:\Users\Public\Documents\Chromasens\3D\sample images\two camera
system\B_0000.bmp" -c¢ "C:\Users\Public\Documents\Chromasens\3D\sample

u-"i chromasens

.
a Imaging for Professionals
.
n
w

images\two camera system\config.ini" --dll "C:\Program
Files\Chromasens\3D\dIIs\CS3DApi64.dll" -i 20 --useroi 0

o e.g. for the calculation with a set ROI

CS3DApiPerformance -a "C:\Users\Public\Documents\Chromasens\3D\sample
images\two camera system\A_0000.bmp" -b
"C:\Users\Public\Documents\Chromasens\3D\sample images\two camera
system\B_0000.bmp" -c "C:\Users\Public\Documents\Chromasens\3D\sample
images\two camera system\config.ini" --dll "C:\Program
Files\Chromasens\3D\dIIs\CS3DApi64.dIl" -i 20 --useroi 1 --roix 1200 --roiy 1100
--roiw 500 --roih 300

- examples\C++\CS3DApiSample

o This sample shows a sequence of image pairs could be processed. The loading
of the source image pairs and the retrieving of the resulting images is done in
parallel.

o Note: This example is not yet available to Linux installations

- examples\C++\SampleDisplaylmages

o This sample first calculates the height map and rectified image and then displays
it. The required parameters are passed through command-line.

o Note: This example is not yet available to Linux installations

- examples\C++\CS3DApiCalibrationVerification

o This sample performs calibration verification, which checks if the calibration is
valid for the current camera status. It takes one (for compact camera) or two (for
dual camera) raw images and corresponding config/calibration files as input, and
the verification results can be the following three cases:

= Calibration verification succeeded: Calibration is valid

= Calibration verification succeeded: Calibration may not be valid any more.
Calibration may need to be adjusted, or further test required.

= Calibration verification failed: Image quality is not acceptable for
calibration verification (image is unsharp, or lack of texture in parts of the
image), or height range is not set properly, or image is scanned in wrong
direction.

The required parameters are passed through command-line.
o Only calibration of version 2 or higher can be verified with this function.
o Syntax:

CS3DApiCalibrationVerification.exe

-a [image from camera A]

-b [image from camera B]

-c [confidfile]

--dll [path to CS3DApi64.dll including the filename]
o e.g. for compact camera images:

CS3DApiCalibrationVerification.exe -a "
C:\Users\Public\Documents\Chromasens\3D\sample images\single camera
system\AB_0000.bmp" -c
"C:\Users\Public\Documents\Chromasens\3D\sample images\single camera
system\config.ini" --dll "C:\Program Files\Chromasens\3D\dlIs\CS3DApi64.dIl"

CS-3D-Api

Imaging for Professionals

chromasens

o e.g. for dual camera images

CS3DApiStandalone.exe -a
"C:\Users\Public\Documents\Chromasens\3D\sample images\two camera
system\A_0000.bmp" -b "C:\Users\Public\Documents\Chromasens\3D\sample
images\two camera system\B_0000.bmp" -c
"C:\Users\Public\Documents\Chromasens\3D\sample images\two camera
system\config.ini" --dll "C:\Program Files\Chromasens\3D\dlIs\CS3DApi64.dIl"

o Note: This example is not yet available to Linux installations

examples\C#\simpleCSharpExample

o This sample calculates height and rectified images from a given image pair.
Then the result images are saved on the hard-disk.

o Note: This example is not yet available to Linux installations
examples\C#\threadedCSharpExample

o This sample shows the throughput of the calculation by using two threads in
parallel. The raw image, the configuration file and the iteration number can be
set.

o Note: This example is not yet available to Linux installations
examples\C#\simpleHalconCSharpExample

o This sample has a similar behavior to simpleCSharpExample. Instead of using
the CS-C# wrapper it uses the CS3D HALCON extension.

o Note: This example is not yet available to Linux installations

examples\HALCON

o The *.hdev scripts contains an example implementation of the height image /
point cloud calculation as well as displaying the results. Also the scripts hold
examples for modifying the calculation parameters and additional functions.

o Note: This example is not yet available to Linux installations

4.4.1 Building Sample Programs on Linux

On Linux all sample programs come with a prepared CMake script for configuring the make file that
allows building the executable. It is recommended to use CMake version 3.10 or newer for configuring
the projects. You can find a pre-built version of CMake either in the Ubuntu repositories or for
download on following website: _https://cmake.org/download/

Note: On Linux all sample programs are located in the following folder:
/opt/Chromasens/3D/examples/

This folder is by default not writable - it is therefore recommended to copy the examples folder to
another location, for example in the user directory.

Please also note that all sample programs require OpenCV 2.4 or higher to be available on the
system. CMake will automatically search for it and report and error if it couldn’t find it.

To configure and build an example program please follow the steps below:

1.) Start the CMake graphical user interface called cmake-gui.

2.) Inthe CMake GUI tool select the source location of the examples folder using the “Browse
Source...” button.

3.) Next select a location where CMake should place the generated make files for you by clicking
the “Browse Build...” button:

CS-3D-Api

https://cmake.org/download/

ﬁ chromasens

Imaging for Professionals

File Tools Options Help

Where is the source code: |fhome/csd0156/Chromasens/examples Browse Source...
Where to build the binaries: | /homefcsd0156/Chromasens/build | | Browse Build...
Search: v| Grouped |v| Advanced |4k Add Entry

4.) Next click the “Configure” button and allow CMake to create the build folder for you if it doesn’t
exist yet.
In the upcoming configuration window, select a make file or project generator. CMake is able
to either generate a simple “Unix Makefile” or even a project that can be opened in eclipse for
further editing.
For this example please select “Unix Makefiles” as the generator.

5.) After pressing configuration two times, your CMake GUI should look like this:

File Tools Options Help

Where is the source code: | /home/csd0156/Chromasens/examples Browse Source...
Where to build the binaries: | /home/csd0156/Chromasens/build ~ | | Browse Build...
Search: Grouped Advanced |Hp Add Entry

Name Value

CMAKE_BUILD_TYPE

CMAKE_INSTALL_PREFIX fusr/local

CS3DApi_INCLUDE_DIR fopt/Chromasens/3D/3dapifincludes
OpenCV_DIR fusrflocal/share/OpenCyV

1 [

Press Configure to update and display new values in red, then press Generate to generate
selected build files.

Configure Generate Current Generator: Unix Makefiles |

Configuring done

6.) If no errors occurred, press the “Generate” button to let CMake create the make file.
7.) Next open a terminal and change the current directory to the build folder where CMake
created the make files.

For example: cd /home/csd@156/Chromasens/build
8.) Next start the build by executing the make command.
The built executables will be placed inside a subfolder, for this example it would be
~/Chromasens/build/C++/CS3DApiPerformance
and
~/Chromasens/build/C++/CS3DApiStandalone
9.) You can now execute the sample programs as described in chapter 4.4 Example Programs.

Extensions

The following extensions are available for Windows platforms:
- {appDir}\Extensions\Halcon

o We include an extension for HALCON 12, 13 and 18.11 so HALCON-Users can
easily start to use the CS-3D-Api.

o An example can be found at %PUBLIC%\documents\Chromasens\3D
Examples\Halcon

- LabVIEW

CS-3D-Api

| T

u-" chromasens

Imaging for Professionals
.

o The “Chromasens 3D Camera Toolkit” is available for download from the
LabVIEW Tool Network (LVTN)
http://sine.ni.com/nips/cds/view/p/lang/de/nid/212780

4.6 Calculation Speed

The determining factors for the calculation speed are:

4.6.1 RAM / PCI-E Bandwidth of PC

Because the image data has to be copied from the RAM of your PC to the GPUs and back, we
recommend mainboards with a high RAM and PCI-E bandwidth.

4.6.2 Calculation Power / Count of GPUs

In principle more GPUs with more CUDA-cores result in faster calculations. A higher clock
frequency of the GPU also results in faster calculation.

4.6.3 How to use the API for Highest Speed

The API is designed to process a continuous stream of video images in high speed.
Depending on the desired calculation speed, the calculation can be done on 1 to multiple
GPUs. To distribute the work to the GPUs, the images are chopped into work units and
distributed to them. Therefore a few images are held in buffers. To get the maximum
calculation speed of the API, these buffers have to be full at any time to make good use of the
GPUs. There are also output buffers where the results of the work units are combined into
images. These buffers should not be full at any time. We recommend using a separate thread
for loading images into the API and for getting the result data from the API.

CS-3D-Api 11

http://sine.ni.com/nips/cds/view/p/lang/de/nid/212780

chromasens

a Imaging for Professionals

4.7 CS-3D-API Overview

In Figure 1 we give an overview what the APl is capable of.

Height map image

CS-3D-API

Image A

3D points

Image B -

Calibration Rectified image

Figure 1: Overview over the CS-3D-Api

12 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
-
n
u

5 Api-Wrapper for C#

In the context of software libraries, a wrapper bridges two programming languages so that a
library written for one language can be used in another language. For example, the CS-3D-Api
is implemented with programming language C++. We implemented a C#-Wrapper
“cSharpWrapper.dll” for the API, so that the functions of CS-3D-Api can also be used in C#.
You can find that wrapper in the folder {appDir}\bins.

In the following part it will be shortly explained how to use the C#-Wrapper.
Step 1: Create a new / Open a C# project

Step 2: Add cSharpWrapper.dll as reference to the project

Unfold the project, which was created in step 1. Then right click “Reference” and select
“Add reference...”. The Wrapper-File “cSharpWrapper.dll” can be found in the subfolder
“bins” of the CS-3D software install path. Add this to the reference. Please make sure you
choose the correct DLL-file

Step 3: Create an API object in C#. Then you can access almost every function of the CS-3D-
API.

public cSharpWrapperApi apiObject = null;
;r.)iObject = new cSharpWrapperApi(dlINamePtr, configNamePtr);
int ret = apiObject.initialize():

l.'.e.t = apiObject.setSrcimglnfo(...);

CS-3D-Api 13

u-"i chromasens

.
a Imaging for Professionals
.
n
w

6 Api - Function List

To avoid complications with other libraries, the Chromasens 3D API uses the CS3D
namespace. As the API functions are available for C++ and C#, both variants are listed.

6.1 Create API Object

For creating the I3DApi object please do as we do it in the examples and use the helper
“accessDIIObj” from C:\Program Files\Chromasens\3D\3dapi\helpers If you like to implement
the creation on your own. Use the exported “CS3DApiCreate” function of the “CS3DApi64.dII”

CS3DApiCreate (I3DApi **ppdst, const char * params, const int majorVersion,
const int minorVersion)

Input values:

ppdst - reference to pointer to I3DApi object.

params — can either be empty “ or filename and path to configuration file
majorVersion — must be CS3D_MAJOR_VERSION constant defined in version.h
minorVersion — must be CS3D_MINOR_VERSION constant defined in version.h

Remark In version v2.3e or older version, the helper files (accessDIIObj.h,
accessDIIObj.cpp, helper.h,helper.cpp) were in the folder
{AppDirj\examples\C++\helpers. From v2.4a, the helper files are moved into
folder {AppDir}\3dapi\helpers. If your own application is using the path of older
helper files, please adjust the path correspondingly.

6.2 Initialization

Before starting the calculation, the initialization has to be done to allocate memory for different buffers
and start the worker-threads. If the configuration is changed, reinitialization has to be done to activate
the changes.

6.2.1 initialize
Variant 1: initialize without parameter

C++ int32_t I3DApi::initialize (void)
C# int cSharpWrapperApi::initialize (void)

Input values:
None.

Return values:
0 if no error, <0 otherwise.

Description:
Does initialization, must be called after I3DApi creation and before any other functions, except
get/load/set/save config functions.

14 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

If the configuration parameter “enableDynamicConfiguration” was enabled, the 3D-API will check if an
initialization is actually required. Please refer to the description of “enableDynamicConfiguration” in
chapter 10.2.2 Control parameters for more information of parameters which don’t require a
reinitialization. If such parameters are changed, they will be applied for the next calculation without
reinitialization of 3D-API indeed. Please also note that a call to setConfig (6.3.2 setConfig) will also
perform a reinitialization of the 3D-API.

If the configuration parameters “enableDynamicConfiguration” was disabled, the 3D-API calculation
has to be stopped before initialization.

Variant 2: initialize with parameter

C++ int32_t I3DApi::initialize (config3DApi *config)

C# Not available

Input values:
config - a config3DApi object to overwrite the initial configuration, loaded from file on I3DApi creation.

Return values:
0 if no error, <0 otherwise

Description:

This function behaves like variant 1, except the given configuration is used instead of the one stored in
the API.

Note: Please note the information about the “enableDynamicConfiguration” parameter in variant 1 of
initialize.

6.2.2 reinitialize

C++ int32_t I3DApi::reinitialize (void)

C# int cSharpWrapperApi::reinitialize (void)

Input values:
None.

Return values:
0 if no error, <0 otherwise.

Description:

Does the initialization like I3DApi::initialize (void) (6.2.1) with the current active configuration, except if
you set a new configuration with I3DApi::setConfig (6.3.2).

6.2.3 getDemoMode

C++ int32_t I3DApi::getDemoMode (void)

C# int cSharpWrapperApi::getDemoMode (void)

Input values:
None.

Return values:

CS-3D-Api 15

u-"i chromasens

.
a Imaging for Professionals
.
n
w

1 if demo-mode is enabled, 0 if disabled.

Description:
Returns the state of the demo mode.

6.2.4 setDemoMode

C++ int32_t I3DApi::setDemoMode (int32_t demoMode)

C# int cSharpWrapperApi::setDemoMode (int demoMode)

Input values:
demoMode — 0 to disable, 1 to enable the demo mode.

Return values:
0 if no error, <0 otherwise.

Description:

Enables or disables the demo mode. After a change, the API has to be reinitialized using functions
6.2.1 0or 6.2.2.

6.3 Configuration

There are two configurations present in the CS-3D-Api. The one called active configuration is used by
the actual running system. And another configuration called new configuration becomes the active
configuration after the call of I3DApi::reinitialize (6.2.2). The two configurations are used to give the
user the possibility of choosing the time when the new config becomes active.

The active configuration can only be read by the getActiveConfig or the getConfig function when no
new configuration is set. Also it is possible to save the active configuration through saveActiveConfig
(6.3.6) or the saveConfig functions, if no new configuration is present.

The new configuration can be set via the setConfig function, read by the getConfig (6.3.1) and written
to file via the saveConfig functions (6.3.6).

6.3.1 getConfig

C++ config3DApi* I3DApi::getConfig (void)

C# bool cSharpWrapperApi::getConfig (void)

Input values:
None

Return values:
C++: NULL on error, otherwise a reference to a config3DApi object.

C#: false on error, true otherwise.

Description:

16 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

C++: Returns copy of new configuration object if present, otherwise a copy of the active configuration
is returned. The copy of the configuration object has to be freed manually using the freeConfig-
function (6.3.10).

C#: Returns a boolean value which indicates if getConfig() runs correctly. To access the result-config
and its every individual attribute, you can use the member “config” of the cSharpWrapperApi object.
The type of config is CS3DConfig. Its members are numCams, doCalc3DPoints, ...

6.3.2 setConfig

Variant 1: setConfig with one parameter.

C++ int32_t I3DApi::setConfig (config3DApi* config)

C# int cSharpWrapperApi::setConfig (void)
Input values:
C++: config - Configuration object
C#: None

Return values:
<0 if an error occurs, 0 otherwise.

Description:

C++: Sets the given configuration as the new API configuration. After the execution of that method the
user has to take care of deleting that object.

Note: Calling setConfig after the API was started is only possible if the configuration flag
“enableDynamicConfigration” was set to true. Otherwise it will stop a running API and clear all internal
structures.

C#: the config member of the wrapper is set as the new configuration for the API.

Variant 2: setConfig with additional parameter to allow automatic initialization.

C++ int32_t I3DApi::setConfig (config3DApi* config, bool autolnit)

C# Not available

Input values:

C++:

config - Configuration object

autolnit — If set to false no additional initialization will be done.

Return values:
<0 if an error occurs, 0 otherwise.

Description:

C++: Performs the same steps as variant 1 but additionally allows controlling the initialization step,
which is always done in variant 1.

6.3.3 loadConfig

C++ int32_t I3DApi::loadConfig (char* filename)

C# int cSharpWrapperApi::loadConfig (string filename)

CS-3D-Api 17

u-"i chromasens

.
a Imaging for Professionals
.
n
w

‘ ‘ (deprecated) int cSharpWrapperApi::loadConfig (sbyte* filename)

Input values:
filename - string which holds the filename (including path) of the config-file to be loaded.

Return values:
0 if no error, <0 otherwise.

Description:
Loads a configuration from file and sets this configuration as the new configuration in the API.

6.3.4 saveConfig

Variant 1: saveConfig without parameter

C++ int32_t I3DApi::saveConfig (void)

C# int cSharpWrapperApi::saveConfig (void)

Input values:
None.

Return values:
0 if no error, <0 otherwise.

Description:

Writes the new configuration back to the original file. If no new configuration is present, the active
configuration will be written. Behaves like variant 2 with relativeCalibrationPath = true.

Variant 2: saveConfig with relative file path option

C++ int32_t I3DApi::saveConfig (bool relativeCalibrationPath)

C# int cSharpWrapperApi::saveConfig (bool relativeCalibrationPath)

Input values:

relativeCalibrationPath — if true only the relative path to the calibration file is stored in the configuration
file. If false the absolute path is stored

Return values:
0 if no error, <0 otherwise

Description:

Writes the new configuration back to the original file. If no new configuration is present, the active
configuration will be written.

Variant 3: saveConfig with parameter

C++ int32_t I3DApi::saveConfig (char* filename)

C# int cSharpWrapperApi::saveConfig (string flename)

18 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

(deprecated) int cSharpWrapperApi::saveConfig (sbyte* filename)

Input values:
filename — string which holds the filename (including path) to write the config-file to.

Return values:
0 if no error, <0 otherwise

Description:

Like I3DApi::saveConfig without parameter (6.3.4), but the filename to save the config-file is given.
Behaves like variant 4 with relativeCalibrationPath = true.

Variant 4: saveConfig with parameter and relative file path option.

C++ int32_t I3DApi::saveConfig (char* filename, bool relativeCalibrationPath)

C# int cSharpWrapperApi::saveConfig (string filename, bool relativeCalibrationPath)

(deprecated) int cSharpWrapperApi::saveConfig (sbyte* filename, bool
relativeCalibrationPath)

Input values:
filename — string which holds the filename (including path) to write the config-file to.

relativeCalibrationPath — if true only the relative path to the calibration file is stored in the configuration
file. If false the absolute path is stored

Return values:
0 if no error, <0 otherwise

Description:
Like I3DApi::saveConfig without parameter (6.3.4), but the filename to save the config-file is given.

6.3.5 getActiveConfig

C++ config3DApi* I3DApi::getActiveConfig (void)

C# bool cSharpWrapperApi::getActiveConfig (void)

Input values:
None

Return values:
C++: 0 on error, otherwise a reference to a config3DApi object.
C#: false on error, true otherwise.

Description:

C++: Returns a copy of the active configuration object. The copy of the configuration object has to be
freed manually using the freeConfig-function (6.3.10).

C#: Returns a boolean value which indicates if getActiveConfig(void) ran correctly. To call the result-
config and its every individual attribute, you can use the member “config” of the cSharpWrapperApi
object. The type of config is CS3DConfig. It's members are numCams, doCalc3DPoints, ...

CS-3D-Api 19

3 chromasens

]
& "\

Imaging for Professionals

6.3.6 saveActiveConfig

Variant 1: saveActiveConfig without parameter

C++ int32_t I3DApi::saveActiveConfig (void)

C# int cSharpWrapperApi::saveActiveConfig (void)
Input values:
None.

Return values:
0 if no error, <0 otherwise.

Description:

Writes the active config to the original file.

Variant 2: saveActiveConfig with relative calibration path option

C++ int32_t I3DApi::saveActiveConfig (bool relativeCalibrationPath)
C# int cSharpWrapperApi::saveActiveConfig (bool relativeCalibrationPath)
Input values:

relativeCalibrationPath — if true only the relative path to the calibration file is stored in the configuration
file. If false the absolute path is stored

Return values:
0 if no error, <0 otherwise

Description:

Writes the active config to the original file.

Variant 3: saveActiveConfig with configuration filename as parameter

C++ int32_t I3DApi::saveActiveConfig (char* filename)
C# int cSharpWrapperApi::saveActiveConfig (string filename)
(deprecated) int cSharpWrapperApi::saveActiveConfig (sbyte* filename)
Input values:

filename — string which holds the filename (including path) to write the config-file to.

Return values:
0 if no error, <0 otherwise

Description:

Like I3DApi::saveActiveConfig without parameter (6.3.6), but the filename is given.

20

CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

Variant 4: saveActiveConfig with configuration filename and calibration file path as parameter

C++ int32_t I3DApi::saveActiveConfig (char* filename, bool relativeCalibrationFile)

C# int cSharpWrapperApi::saveActiveConfig (string filename, bool relativeCalibrationFile)

(deprecated) int cSharpWrapperApi::saveActiveConfig (sbyte* flename, bool
relativeCalibrationFile)

Input values:
filename — string which holds the filename (including path) to write the config-file to.

relativeCalibrationPath — if true only the relative path to the calibration file is stored in the configuration
file. If false the absolute path is stored

Return values:
0 if no error, <0 otherwise

Description:

Writes the active config to a given configuration filename. Additionally, the user decides whether the
relative calibration file path is used

6.3.7 loadConfigFromCamera

C++ int32_t I3DApi::loadConfigFromCamera (const char* connectionType, int32_t
portNumber)

C# int cSharpWrapperApi::loadConfigFromCamera(string conectionType, int portNumber)

(deprecated) int cSharpWrapperApi::loadConfigFromCamera(sbyte* conectionType, int
portNumber)

Input values:

connectionType — string which holds the connection type for connecting to the 3DPIXA. Currently
supported connection types are: “RS232” and “CL” (Camera Link).

portNumber — integer which holds the port number for connecting to the camera.

Return values:
0 if no error, <0 otherwise.

Description:
Loads a configuration from camera and sets this configuration as the new configuration in the API.

6.3.8 saveConfigToCamera

C++ int32_t I3DApi::saveConfigToCamera (const char* connectionType, int32_t
portNumber)
C# int cSharpWrapperApi::saveConfigToCamera(string conectionType, int portNumber)

(deprecated) int cSharpWrapperApi::saveConfigToCamera(sbyte* conectionType, int
portNumber)

CS-3D-Api 21

3 chromasens

a | A Imaging for Professionals

I
w
Input values:

connectionType — string which holds the connection type for connecting to the 3DPIXA. Currently
supported connection types are: “RS232” and “CL” (Camera Link).

portNumber — integer which holds the port number for connecting to the camera.

Return values:
0 if no error, <0 otherwise.

Description:

Writes the new configuration to the camera memory. If no new configuration is present, the active
configuration will be written.

6.3.9 saveCalibration

C++ int32_t I3DApi::saveCalibration (char* filename)

C# int cSharpWrapperApi::saveCalibration (String” filename)

Input values:
filename — string which holds the filename (including path) to write the calibration-file to.

Return values:
0 if no error, <0 otherwise

Description:
Writes the calibration to a given file.

6.3.10 freeConfig

C++ int32_t I3DApi::freeConfig (config3DApi **config)

C# Not needed

Input values:
C++: config — pointer to a given configuration object.

Return values:
C++: 0 if no error, <0 otherwise.

Description:

C++: Deletes a given configuration object.
C#: freeConfig() is not needed.

6.4 Image Loading

22 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

REMARK: Waiting to load next input image can be done with function 6.4.11 actively or via event with
WaitForMultipleObjects and function 6.4.4 (Windows only).
On Linux use the acquirelmages (6.4.5) function for this purpose.

6.4.1 setSrcImginfo

C++ int32_t I3DApi::setSrcimglinfo (int32_t camNr, int32_t width, int32_t height, int32_t
channels, int32_t bpp, int32_t linePitch, uint64_t sizelnByte)

C# int cSharpWrapperApi::setSrcimglnfo (int camNr, int width, int height, int channels, int
bpp, int linePitch, ulong sizelnByte)

Input values:
camNr — must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems, the image is split within the API, so only one image for camNr=0 has to be set.

width — image width in pixels

height — image height in pixels

channels — number of image channels

bpp — bits per pixel. E.g. for an 8-bit RGB image bpp has to be set to 24, for an 8-bit gray image to 8.
pitch — line pitch in bytes

sizelnByte — size of the whole image in bytes

Return values:
0 if no error, <0 otherwise.

Description:

Sets information of input image for further function calls. Has to be set before getDestimginfo is called.
If src image information changes, it will automatically reinitialize the API.

6.4.2 setSrclmgPtr

C++ int32_t I3DApi::setSrcimgPtr (int32_t scamNr, char* ptr)

C# int cSharpWrapperApi::setSrcimgPtr (int camNr, byte* ptr)

Input values:

camNr - must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems, the image is split within the API, so only one image for camNr=0 has to be set.

ptr — pointer to a source image buffer, for the different image formats see chapter 8.1.

Return values:
0 if no error, <0 otherwise.

Description:

Function to set a pointer to an input image buffer for source camNr. Supported image formats are
described in chapter 8.1.

6.4.3 setlmageMask

C++ int32_t setlmageMask(const unsigned char * p)

CS-3D-Api 23

u-"i chromasens

.
a Imaging for Professionals
.
n
w

| c# [cerony

Input Values:

p — Pointer to the mask image buffer. The input mask image should be single channel grayscale
image of type unsigned char.

Return Values:
0 if no error, <0 otherwise.

Description:

This function provides the mask image data to the API. The calculation process will then be performed
on pixel area only specific to mask region.

6.4.4 getLoadingEventForSource

C++ HANDLE I3DApi::getLoadingEventForSource (int32_t camNr)
C# C++ only

Input values:

camNr - must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems, the image is split within the API, so only one image for camNr=0 has to be set.

Return values:
HANDLE (MFC) of event for given input channel.

Description:

Gets the handle of the image loading event. The event signals when it is safe to set a pointer to a new
input image.

Note: This function is only available for Windows platforms. For Linux platforms please use the
acquirelmages() function.

6.4.5 acquirelmages

C++ int32_t 13DApi::acquirelmages(int32_t &curlmgNrOut, unsigned char * _imgAPtr,
unsigned char * _imgBPtr)

C# Not available yet

Output values:

curlmgNrOut — This variable will hold the internal image number of the input image dataset given to
the API for processing.

Input Values:
imgAPtr- Data pointer of the input image 0 or A. For different formats, check chapter 8.1.

imgBPtr- Data pointer of the input image B. In case of using single camera setup, image data will be
divided inside API. In that case, data should be given only to imgAPtr and the imgBPtr could be set to
NULL.

Return values:
0 if no error, <0 otherwise.

24 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

Description: This function combines the functions getLoadingEventForSource, setSrcimgPtr and
setSrcimglLoaded as an alternative approach for passing images to the API. It sets the data pointers of
the source images to the APl and manages the event handle that signals when it is safe to set a
pointer of new input image and the event handle that signals that the data pointer is set. This method
will block until it can set the image data pointers and it can be cancelled using the cancel method
(6.5.5).

6.4.6 blockUntilFetchableResultReady

C++ int32_t blockUntilFetchableResultReady(uint32_t &_currentimageOut, int32_t
_timeout)
C# Not available yet

Output values:

currentimageOut — This function will store the internal image number of the input image dataset given
to the API for processing.

Input Values:
_timeout — Timeout in milliseconds, -1 for infinite waiting.

Return value:
If <0 it returns an error code.

Description:

Blocks until next image is calculated or timeout is reached. The call can be canceled by the cancel
function (6.5.5).

6.4.7 getResult

C++ int32_t getResult(uint32_t _currentimageNr, void ** dataPtr, outimgType _type)
C# Not available yet
Input Values:

currentimageNr — Internal image number of the specific dataset for which the output is required.

dataPtr — The pointer to store the calculated output of output type specified in _type.

_type - The type of the output image. It can be:
IMG_OUT_DISP,
IMG_OUT_DISP_8BIT,
IMG_OUT_RGB,
IMG_OUT_BGR,
IMG_OUT_RGBA,
IMG_OUT_BGRA,
IMG_OUT_GRAY,
IMG_OUT_P3D,
IMG_OUT_CONF_8BIT,
IMG_OUT_CONF_FLOAT,

CS-3D-Api 25

l T

u-"i chromasens

.
a Imaging for Professionals
.
n
w

IMG_OUT_BGR?2,
IMG_OUT_GRAY?2,
IMG_OUT_RGB?2,
IMG_OUT_BGR_PLANES,
IMG_OUT_RGB_PLANES,
IMG_OUT_BGR2_PLANES,
IMG_OUT_RGB2_PLANES
Detailed description see chapter 8.2.

Description:

This function calculates and allocates the memory required to store output of specified type. The
calculated output data will then be copied to the pointer. This function provides the output of any
calculated image dataset when requested with specific internal image number in _currentimageNr.

Important: Please note that the allocated memory has to be freed explicitly with the freeResult
function after it was used.

6.4.8 freeResult

C++ int32_t freeResult(uint32_t imageNr)
C# Not available yet
Input Values:

imageNr — Internal Image number of the specific dataset that should be freed.

Description:

This function frees internal memory of a calculation result that was earlier requested with the getResult
function.

6.4.9 blockUntillmagelsLoaded

C++ C# only

C# bool cSharpWrapperApi::blockUntillmagelsLoaded (int numCams)

Input values:
numCams — 1 for single camera system and 2 for two camera system

Return values:
C#: true if the image of the camera(s) is loaded, otherwise false.

Description:
Does the task of getLoadingEventForSource and then block the process until the image is loaded

6.4.10 setSrcimgLoaded

C++ int32_t 13DApi::setSrcimgLoaded (int32_t camNr)

C# int cSharpWrapperApi:: setSrcimglLoaded (int camNr)

26 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

Input values:

camNr - must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems, the image is split within the API, so only one image for camNr=0 has to be set.

Return values:
0 if no error, <0 otherwise.

Description:

The function signals the end of the image loading process to the API. Has to be called after the pointer
to the source image is set with the setSrcimgPtr-function (6.4.2) and the processing has started with
start-function (6.5.1)

6.4.11 getSrcImgStatus

C++ sopStates I3DApi::getSrcimgStatus (int32_t camNr)

C# sopStates cSharpWrapperApi:: getSrcimgStatus (int camNr)

Input values:

camNr - must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems, the image is split within the API, so only one image for camNr=0 has to be set.

Return value:

status of image processing, can be
SOP_FREE or
SOP_IMG_LOADED

Description:

The function gets the status of the input image processing for source camNr. If it's SOP_FREE, the
input image has been processed and I3DApi::setSrcimgPtr can be set to next image buffer. When the
function returns SOP_IMG_LOADING the image is still in use by the API.

6.4.12 getSrcImgChannelOrder

C++ channelOrder I3DApi::getSrcimgChannelOrder (int32_t camNr)

C# cSharpWrapper::channelOrder cSharpWrapperApi:: getSrcimgChannelOrder (int
camNr)

Input values:

camNr — must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems, the image is split within the API, so only one image for camNr=0 has to be set.

Return values:

<0 if an error occurs.

Otherwise:

CO_RGB, CO_BGR, CO_RGBA, CO_BGRA, CO_GRAY, CO_BGR PLANES or CO_RGB_PLANES

CS-3D-Api 27

3 chromasens

a | A Imaging for Professionals

Description:

Function gets the channel order of the input image. An explanation of the different channel orders can
be found at chapter 8.1.

6.4.13 setSrcimgChannelOrder

C++ int32_t 13DApi:: setSrcimgChannelOrder (int32_t camNr, channelOrder co)

C# int cSharpWrapperApi:: setSrcimgChannelOrder (int camNr,
cSharpWrapper::channelOrder co)

Input values:

camNr — must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems, the image is split within the api, so only one image for camNr=0 has to be set.

co — channel order of the input image, can be

CO_RGB,

CO_BGR,

CO_RGBA,

CO_BGRA,

CO_GRAY,

CO_BGR_PLANES,
CO_RGB_PLANES

Return values:
0 if no error, <0 otherwise.

Description:

Function sets the channel order of the input image. An explanation of the different channel orders can
be found at chapter 8.1.

6.4.14 getRoi

C++ int32_t I3DApi::getRoi (int32_t &x, int32_t &y, int32_t &width, int32_t &height)

C# int cSharpWrapperApi:: getRoi (int* x, int* y, int* width, int* height)

Input values:

x — Holds the horizontal starting position of the ROI in the first image, after call.
y — Holds the vertical starting position of the ROI in the first image, after call.
width — Holds the width of the ROI in the first image, after call.

height — Holds the height of the ROI in the first image, after call.

Return values:
0 if no error, <0 otherwise.

Description:

28 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

Function gets a previously set ROI. In case of error, all values are set to “-1” on return.

6.4.15 setRoi

C++ int32_t I3DApi::setRoi (int32_t x, int32_t vy, int32_t width, int32_t height)

C# int cSharpWrapperApi:: setRoi (int x, int y, int width, int height)

Input values:

x — The horizontal starting position of the ROI in the first image.
y — The vertical starting position of the ROI in the first image.
width — The width of the ROl in the first image.

height — The height of the ROI in the first image.

Return values:
0 if no error, <0 otherwise.

Possible errors:
CS3D_CORE_NOT_INITIALISED
CS3D_SYSTEM_ALREADY_STARTED
CS3D_INVALID_ROI
CS3D_WARN_ROI_ADJUSTED

Description:

Function sets a ROI used for the calculation. The ROI has to be set after initialization and before
starting the calculation. Setting the ROI modifies the active configuration. There is a minimum
requirement on the size of the ROI of 100x100 px.

6.4.16 moveRoi

C++ int32_t 13DApi::moveRoi (int32_t x, int32_t y)

C# int cSharpWrapperApi:: moveRoi (int x, int y)

Input values:
x — The horizontal starting position of the roi in the first image.
y — The vertical starting position of the roi in the first image.

Return values:
0 if no error, <0 otherwise.

Possible errors:

CS3D_CORE_NOT_INITIALISED
CS3D_INVALID_ROI
CS3D_WARN_ROI_ADJUSTED

Description:

Moves the ROI to the given position while the calculation is running. This function has a direct impact
on the calculation. It should be only called when no images are in the calculation queue.

CS-3D-Api 29

3 chromasens

a | Imaging for Professionals
-
u
-

6.4.17 enableRoiCalculation

C++ int32_t 13DApi::enableRoiCalculation (void)

C# int cSharpWrapperApi:: enableRoiCalculation (void)

Input values:
None.

Return values:
0 if no error, <0 otherwise.

Description:

Enables the use of a previously defined ROI. Can’t be called while the calculation is running.
Therefore the API has to be stopped before the function can be called.

6.4.18 disableRoiCalculation

C++ int32_t 13DApi::disableRoiCalculation (void)

C# int cSharpWrapperApi:: disableRoiCalculation (void)

Input values:
None.

Return values:
0 if no error, <0 otherwise.

Description:

Disables the use of a previously defined ROI. Can'’t be called while the calculation is running.
Therefore the API has to be stopped before the function can be called.

6.5 Calculation Process

6.5.1 start

C++ int32_t 13DApi::start (void)

C# int cSharpWrapperApi:: start (void)

Input values:
None

Return values:
0 if no error, <0 otherwise.

Description:

30 CS-3D-Api

| T

:.r" chromasens

L
. Imaging for Professionals
.
n
u

Starts the calculation of 3D information. Source image pointer and source image information must be
set before via setSrcimgPtr (6.4.2).

6.5.2 stopBlocking

C++ int32_t I3DApi::stopBlocking (void)

C# int cSharpWrapperApi:: stopBlocking (void)
Input values:
None

Return values:
0 if no error, <0 otherwise.

Description:

Stops processing of additional images and blocks until calculation of the current image pair is finished.

6.5.3 getDestlmglnfo

C++ int32_t 13DApi::getDestimginfo (outimgType imgType, int32_t &width, int32_t
&height, int32_t &channels, uint64_t &sizelnByte)
C# Int cSharpWrapperApi::getDestimginfo (cSharpWrapper::outimgType imgType, int
width, int height, int* channels, ulong* sizelnByte)
Input values:

imgType — the type of the output image can be:

IMG_OUT_DISP,
IMG_OUT_DISP_8BIT,
IMG_OUT_RGSB,
IMG_OUT_BGR,
IMG_OUT_RGBA,
IMG_OUT_BGRA,
IMG_OUT_GRAY,
IMG_OUT_P3D,
IMG_OUT_CONF_8BIT,
IMG_OUT_CONF_FLOAT,
IMG_OUT_BGR?2,
IMG_OUT_GRAY2,
IMG_OUT_RGB2,
IMG_OUT_BGR_PLANES,
IMG_OUT_RGB_PLANES,
IMG_OUT_BGR2_PLANES,
IMG_OUT_RGB2_PLANES
Detailed description see chapter 8.2.

width — contains the image width of the output image in pixels/points after call
height — contains the image height of the output image in pixels/points after call
channels — contains the number of channels after the call

CS-3D-Api

31

3 chromasens

a | A Imaging for Professionals

sizelnByte — contains the size of the whole output image in bytes after the call

Return values:
0 if no error, <0 otherwise.

Width, height, channels and size hold “-1” if the given outimgType is not available or no source image
information is set.

Description:

Gets information of the output image of the type imgType. Source image information must be set via
I3DApi::setSrcimginfo (6.4.1) before using this function.

6.5.4 getNextImgBlocking

Variant 1: getNextimgBlocking without parameter

C++ int32_t 13DApi::getNextimgBlocking (void)

C# long cSharpWrapperApi:: getNextimgBlocking (void)

Input values:
None

Return value:
If <0 it returns an error code, otherwise the current image number.

Description:

Blocks until next image is calculated. It behaves like variant 2 with a timeout = -1. The call can be
canceled by the cancel-function (6.5.5).

Variant 2: getNextimgBlocking with parameter

C++ int32_t I3DApi::getNextimgBlocking (int32_t timeout)

C# long cSharpWrapperApi:: getNextimgBlocking (int timeout)

Input values:
timeout — Timeout in milliseconds, -1 for infinite waiting.

Return value:
If <0 it returns an error code, otherwise the current image number.

Description:

Blocks until next image is calculated or timeout is reached. The call can be canceled by the cancel
function (6.5.5).

6.5.5 cancel
C++ int32_t I3DApi::cancel (void)
C# int cSharpWrapperApi:: cancel (void)

32 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

Input values:
None

Return values:
0 if no error, <0 otherwise.

Description:

Makes the functions getNextimgBlocking (6.5.4) and acquirelmages (6.4.5) return at once. If
getNextimgBlocking is not running when this function is called, the cancel command is preserved for
the next getNextimgBlocking call, and will become invalid after calling the 6.5.2 stopBlocking()
function. The calculation of the image is not affected.

6.5.6 getLastlmage
6.5.6.1 getLastlmage for 16-bit height map images

Variant 1: linePitch is not given.

C++ int32_t I3DApi::getLastimage (int16_t ** imgPtr, outimgType imgType)

C# int cSharpWrapperApi:: getLastimage (cSharpWrapper::outimgType imgType, ushort**
imgPtr)

Input values:
imgPtr — unsigned short pointer to allocated buffer, for image format see chapter 8.2.
imgType — the type of the output image can be:

IMG_OUT _DISP

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function copies the destination image to buffer ptr. The buffer must be allocated by the user. You
can get the buffer size and the additional destination image information via the getDestimginfo-
function. The output image types are described in chapter 8.2.

Variant 2: linePitch is given.

C++ int32_t I3DApi::getLastimage (int16_t** imgPtr, int32_t linePitch, outimgType imgType)

C# int cSharpWrapperApi:: getLastimage (cSharpWrapper::outimgType imgType, int
linePitch, ushort** imgPtr)

Input values:
imgPtr — unsigned short pointer to allocated buffer, for image format see chapter 8.2.
linePitch — length of an image line in bytes, including padding bytes.
imgType — the type of the output image can be:
IMG_OUT_DISP

Return values:
Function returns 0 on no error, <0 otherwise

CS-3D-Api 33

| T

u-"i chromasens

.
a Imaging for Professionals
.
n
w

Description:

This function copies the destination image to buffer ptr. The buffer must be allocated by the user. You
can get the buffer size and the additional destination image information via getDestimginfo function.
The output image types are described in chapter 8.2.

6.5.6.2 getLastImage for rectified image or 8-bit height map or 8-bit confidence
map

Variant 1: linePitch is not given.

C++ int32_t I3DApi::getLastimage (int16_t** imgPtr, outimgType imgType)

C# int cSharpWrapperApi:: getLastimage (cSharpWrapper::outimgType imgType, byte**
imgPtr)

Input values:

imgPtr — unsigned char pointer to allocated buffer, for image format see chapter 8.2.

imgType — the type of the output image can be:
IMG_OUT_RGSB,
IMG_OUT_BGR,
IMG_OUT_RGBA,
IMG_OUT_BGRA,
IMG_OUT_DISP_8BIT,
IMG_OUT_GRAY,
IMG_OUT_CONF_8BIT,
IMG_OUT_BGR?2,
IMG_OUT_GRAY?2,
IMG_OUT_RGB2,
IMG_OUT_BGR_PLANES,
IMG_OUT_RGB_PLANES,
IMG_OUT_BGR2_PLANES,
IMG_OUT_RGB2_PLANES

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function copies the destination image to the buffer ptr. The buffer must be allocated by the user.
You can get the buffer size and the additional destination image information the getDestimginfo
function. The output image types are described in chapter 8.2.

Variant 2: linePitch is given.

C++ int32_t I3DApi::getLastimage (int16_t** imgPtr, int32_t linePitch, outimgType imgType)

C# int cSharpWrapperApi:: getLastimage (cSharpWrapper::outimgType imgType, int
linePitch, byte** imgPtr)

Input values:

imgPtr — unsigned char pointer to allocated buffer, for image format see chapter 8.2.
linePitch — length of an image line in bytes, including padding bytes.

imgType — the type of the output image can be:

34 CS-3D-Api

| T

“# chromasens

= a B Imaging for Professionals
-
IMG_OUT_RGB,

IMG_OUT _BGR,

IMG_OUT_RGBA,

IMG_OUT_BGRA,

IMG_OUT DISP_8BIT,

IMG_OUT_GRAY,

IMG_OUT_CONF_8BIT,

IMG_OUT_BGR?2,

IMG_OUT_GRAYZ2,

IMG_OUT_RGB2,

IMG_OUT_BGR_PLANES,

IMG_OUT _RGB_PLANES,
IMG_OUT_BGR2_PLANES,

IMG_OUT _RGB2_PLANES

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function copies the destination image to the buffer ptr. The buffer must be allocated by the user.
You can get the buffer size and the additional destination image information via the getDestimginfo
function. The output image types are described in chapter 8.2.

6.5.6.3 getLastlmage for point cloud or float confidence map image

Variant 1: linePitch is not given.

C++ int32_t I3DApi::getLastimage (float*™ imgPtr, outimgType imgType)

C# int cSharpWrapperApi:: getLastimage (cSharpWrapper::outimgType imgType, float**
imgPtr)

Input values:
imgPtr — float pointer to allocated buffer, for image format see chapter 8.2.
imgType — the type of the output image can be:

IMG_OUT_P3D,

IMG_OUT_CONF_FLOAT

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function copies the destination image to buffer ptr. The buffer must be allocated by the user. You
can get the buffer size and the additional destination image information via the getDestimglnfo
function. The output image types are described in chapter 8.2.

Variant 2: linePitch is given.

C++ int32_t I3DApi::getLastimage (float*™ imgPtr, int32_t linePitch, outimgType imgType)

CS-3D-Api 35

u-"i chromasens

.
a Imaging for Professionals
.
n
w

C# int cSharpWrapperApi:: getLastimage (cSharpWrapper::outimgType imgType, int
linePitch, float** imgPtr)

Input values:
imgPtr — float pointer to allocated buffer, for image format see chapter 8.2.
linePitch — length of an image line in bytes, including padding bytes.
imgType — the type of the output image can be:

IMG_OUT_P3D,

IMG_OUT_CONF_FLOAT

Return values:
Function returns 0 on no error, <0 otherwise

Description:

This function copies the destination image to buffer ptr. The buffer must be allocated by the user. You
can get the buffer size and the additional destination image information via the function. The output
image types are described in chapter 8.2.

6.5.7 freeDestlmage

C++ int32_t I3DApi::freeDestimage (void)

C# int cSharpWrapperApi:: freeDestimage (void)

Input values:
None

Return values:
0 if no error, <0 otherwise.

Description:

This function explicitly frees the internal buffer of the last image. It is also done automatically if
I13Dapi::getNextimgBlocking or cSharpWrapperApi::getNextimgBlocking is called the next time.

6.5.8 rawlmageCoordsTo3D

Variant 1: Automatically detect the image height

C++ int32_t I3Dapi::rawlmageCoordsTo3D(int32_t numPoints, channel chan, float*
imgAXPos, float* imgAYPos, float* imgBXPos, float* imgBYPos, float*** resXYZPos)
C# int cSharpWrapperApi::rawlmageCoordsTo3D(int numPoints, cSharpWrapper::channel

chan, float[] imgAXPos, float[] imgAYPos, float[] imgBXPos, float[] ingBYPos, ref
float[,] resXYZPos)

Input values:
numPoints — Number of points within the given array.
chan — Channel of the points given.

CHAN_BLUE,

CHAN_GREEN,

36 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

.l
CHAN_RED

imgAXPos — Array of column positions of source image A.
imgAYPos — Array of row positions of source image A.
imgBXPos — Array of column positions of source image B.
imgBYPos — Array of row positions of source image B.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, the parameter resXYZPos is not a pointer but a 2 dimensional float array with a
size of [numPoints, 3]. The calculated coordinates in resXYZPOs have millimeter as unit.

Return values:
Function returns 0 on no error, <0 otherwise.

When function returns CS3D_WARN_P3D_NOT_VALID, one or more pairs of raw coordinates have invalid
3D calculation results, whose results are set to all-zero triplet.

Description:

This function calculates 3D world coordinates in mm for each set of 2D pixel coordinates that are
passed to it. With that function you can get 3D coordinates from manual determined 2D coordinates.
After a successful execution the resXYZPos array will hold the X, Y and Z coordinates for each given
set of coordinates.

Variant 2: Manually set the image height

C++ int32_t I3Dapi::rawlmageCoordsTo3D(int32_t numPoints, channel chan, int32_t
imageHeight, float* imgAXPos, float* imgAYPos, float* imgBXPos, float* ingBYPos,
float*™** resXYZPos)

C# int cSharpWrapperApi::rawlmageCoordsTo3D(int numPoints, cSharpWrapper::channel
chan, int imageHeight, float[] imgAXPos, float[] imgAYPos, float[] imgBXPos, float[]
imgBYPos, ref float[,] resXYZPos)

Input values:
numPoints — Number of points within the given array.
chan — Channel of the points given.

CHAN_BLUE,

CHAN_GREEN,

CHAN_RED
imageHeight — Image height to use for the calculation of the y coordinates
imgAXPos — Array of column positions of source image A.
imgAYPos — Array of row positions of source image A.
imgBXPos — Array of column positions of source image B.
imgBYPos — Array of row positions of source image B.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, the parameter resXYZPos is not a pointer but a 2 dimensional float array with a
size of [numPoints, 3]. The calculated coordinates in resXYZPOs have millimeter as unit.

Return values:
Function returns 0 on no error, <0 otherwise

When function returns CS3D_WARN_P3D_NOT_VALID, one or more pairs of raw coordinates have invalid
3D calculation results, whose results are set to all-zero triplet.

CS-3D-Api 37

u-"i chromasens

.
a Imaging for Professionals
.
n
w

Description:

This function behaves like variant 1, but with a specific image height given that is used to calculate the
y coordinates.

6.5.9 rectimageCoordsTo3D

Variant 1: Automatically detect the image height

C++ int32_t 13Dapi::rectimageCoordsTo3D(int32_t numPoints, float* imgAXPos, float*
imgAYPos, float* imgBXPos, float* imgBYPos, float*** resXYZPos)

C# int cSharpWrapperApi::rectimageCoordsTo3D (int numPoints, float[]] imgAXPos, float[]
imgAYPos, float[] imgBXPos, float[] imgBYPos, ref float[,] resXYZPos)

Input values:
numPoints — Number of points within the given array.

imgAXPos — Array of column positions of rectified image A.
imgAYPos — Array of row positions of rectified image A.
imgBXPos — Array of column positions of rectified image B.
imgBYPos — Array of row positions of rectified image B.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, the parameter resXYZPos is not a pointer but a 2 dimensional float array with a
size of [numPoints, 3]. The calculated coordinates in resXYZPOs have millimeter as unit.

Return values:
Function returns 0 on no error, <0 otherwise.

When function returns CS3D_WARN_P3D_NOT_VALID, one or more pairs of raw coordinates have invalid
3D calculation results, whose results are set to all-zero triplet.

Description:

This function calculates 3D world coordinates in mm for each set of 2D pixel coordinates that are
passed to it. With that function you can get 3D coordinates from manual determined 2D coordinates.
After a successful execution the resXYZPos array will hold the X, Y and Z coordinates for each given
set of coordinates.

Variant 2: Manually set the image height

C++ int32_t 13Dapi::rectimageCoordsTo3D(int32_t numPoints, int32_t imageHeight, float*
imgAXPos, float* imgAYPos, float* imgBXPos, float* imgBYPos, float*** resXYZPos)

C# int cSharpWrapperApi::rectimageCoordsTo3D(int numPoints, int imageHeight, float]]
imgAXPos, float[] imgAYPos, float[] imgBXPos, float[] imgBYPos, ref float[,]
resXYZPos)

Input values:

numPoints — Number of points within the given array.

imageHeight — Image height to use for the calculation of the y coordinates

imgAXPos — Array of column positions of rectified image A.

38 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

imgAYPos — Array of row positions of rectified image A.
imgBXPos — Array of column positions of rectified image B.
imgBYPos — Array of row positions of rectified image B.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, the parameter resXYZPos is not a pointer but a 2 dimensional float array with a
size of [numPoints, 3]. The calculated coordinates in resXYZPOs have millimeter as unit.

Return values:
Function returns 0 on no error, <0 otherwise

When function returns CS3D_WARN_P3D_NOT_VALID, one or more pairs of raw coordinates have invalid
3D calculation results, whose results are set to all-zero triplet.

Description:

This function behaves like variant 1, but with a specific image height given that is used to calculate the
y coordinates.

6.5.10 rawlmageCoordsToRectCoords

C++ int32_t 13Dapi::rawlmageCoordsToRectCoords(float ** rectXPosOut, float **
rectYPosOut, int32_t numPoints, channel chan, float* imgXPos, float* imgYPos, int32_t
cameraNr)

C# int cSharpWrapperApi:: rawlmageCoordsToRectCoords (ref float[] rectXPosOut, ref
float[] rectYPosOut, int numPoints, channel chan, int numPoints, float[] rawXPos, float[]
rawYPos, int cameraNr)

Input values:

rectXPosOut — Pointer to an allocated float array, that must have [numPoints] dimensions.
rectYPosOut — Pointer to an allocated float array, that must have [numPoints] dimensions.

numPoints — Number of points within the given array.
chan — Channel of the points given.

CHAN_BLUE,

CHAN_GREEN,

CHAN_RED
rawXPos — Array of column positions of the raw image.
rawYPos — Array of row positions of raw image.

cameraNr - Must be 0 for the image of camera A or 1 for the image of camera B. In single camera
systems only camNr=0 has to be set.

Return values:
Function returns 0 on no error, <0 otherwise

Description:

CS-3D-Api 39

u-"i chromasens

.
a Imaging for Professionals
.
n
w

This function calculates 2D rectified image coordinates in pixel for each set of raw image 2D pixel
coordinates that are passed to it. After a successful execution the rectXPosOut /rectYPosOut array will
hold the X and Y coordinates for each given set of coordinates. The central view correction will not
apply to the results.

6.5.11 grayTo3D
6.5.11.1 grayTo3D for 16-Bit gray values

Variant 1: Automatically detect the image height

C++ int32_t 13Dapi::grayTo3D(int32_t numPoints, int32_t * imgXPos, int32_t * imgYPos,
uint16_t *SgrayVals, float *** resXYZPos)

C# int cSharpWrapperApi::grayTo3D(int numPoints, int[] imgXPos, int[] imgYPos, ushort[]
grayVals, ref float[,] resXYZPos)

Input values:
numPoints — Number of points within the given arrays.

imgXPos — Array of column positions of height image.
imgYPos — Array of row positions of height image.
grayVals — Array of gray values.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, resXYZPos is not a pointer but a 2 dimensional float array, which has the size of
[numPoints, 3]

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function calculates 3D world coordinates for each set of combinations of X,Y coordinates and
gray values from a height image.

Variant 2: Manually set the image height

C++ int32_t 13Dapi::grayTo3D(int32_t numPoints, int32_t imageHeight, int32_t * imgXPos,
int32_t * imgYPos, uint16_t* grayVals, float*** resXYZPos)

C# int cSharpWrapperApi::grayTo3D(int numPoints, int imageHeight, int[] imgXPos, int[]
imgYPos, ushort[] grayVals, ref float[,] resXYZPos)

Input values:
numPoints — Number of points within the given arrays.

imageHeight — Image height to use for the calculation of the y coordinates
imgXPos — Array of column positions of height image.

imgYPos — Array of row positions of height image.
grayVals — Array of gray values.

40 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, resXYZPos is not a pointer but a 2 dimensional float array, which has a size of
[numPoints, 3]

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function calculates 3D coordinates for each set of combinations of X,Y coordinates and gray
values from a height image.

6.5.11.2 grayTo3D for 8-Bit gray values

Variant 1: Automatically detect the image height

C++ int32_t I3Dapi::grayTo3D(int32_t numPoints, int32_t * imgXPos, int32_t * imgYPos,
unsigned char* grayVals, float*** resXYZPos)

C# int cSharpWrapperApi::grayTo3D(int numPoints, int[] imgXPos, int[] imgYPos, byte[]
grayVals, ref float[,] resXYZPos)

Input values:

numPoints — Number of points within the given arrays.
imgXPos — Array of column positions of height image.
imgYPos — Array of row positions of height image.
grayVals — Array of gray values.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, resXYZPos is not a pointer but a 2 dimensional float array, which has a size of
[numPoints, 3]

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function calculates 3D coordinates for each set of combinations of X,Y coordinates and gray
values from a height image.

Variant 2: Manually set the image height

C++ int32_t 13Dapi::grayTo3D(int32_t numPoints, int32_t imageHeight, int32_t * imgXPos,
int32_t * imgYPos, unsigned char* grayVals, float*** resXYZPos)

C# int cSharpWrapperApi::grayTo3D(int numPoints, int imageHeight, int[] imgXPos, int[]
imgYPos, byte[] grayVals, ref float[,] resXYZPos)

Input values:

numPoints — Number of points within the given arrays.

imageHeight — Image height to use for the calculation of the y coordinates.
imgXPos — Array of column positions of height image.

imgYPos — Array of row positions of height image.

grayVals — Array of gray values.

resXYZPos — Pointer to an allocated 2 dimensional float array, that must have [numPoints][3]
dimensions. In C#, resXYZPos is not a pointer but a 2 dimensional float array, which has a size of
[numPoints, 3]

CS-3D-Api

3 chromasens

a | Imaging for Professionals
I
w

Return values:
Function returns 0 on no error, <0 otherwise

Description:

This function calculates 3D coordinates for each set of combinations of X and Y coordinates and gray

values from a height image.

6.6 Miscellaneous

This chapter describes functions for miscellaneous use.

6.6.1 getVersion

C++ void I13Dapi::getVersion (int32_t &maijor, int32_t &minor, int32_t &build)

C# void cSharpWrapperApi:: getVersion (int* major, int* minor, int* build)

Input values:

major — contains major version number after the call.
Minor — contains minor version number after the call.
Build — contains build number after the call.

Return values:
None.

Description:
Return the version of the API.

6.6.2 isStarted

C++ bool 13Dapi::isStarted (void)

C# bool cSharpWrapperApi:: isStarted(void)

Input values:
None.

Return values:
True if the API is started, otherwise false

Description:
Returns the status of the API

42

CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

6.6.3 islnitialized

C++ bool I3Dapi::isInitialized (void)

C# bool cSharpWrapperApi:: isInitialized(void)

Input values:
None.

Return values:
True if the APl is initialized, otherwise false

Description:
Returns the status of the API

6.6.4 grayToMm
Variant 1: grayToMm with for 16-bit gray values

C++ int32_t I3Dapi::grayToMm (float &distinMm, unsigned short grayValue)

C# int cSharpWrapperApi:: grayToMm (float* distinMm, ushort grayValue)

Input values:

distinMm — float to store the distance value in mm, which is the distance between object surface and
camera.

grayValue — the 16-bit intensity value in height map to be converted into distance value in mm.

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function converts the intensity values to distance values in mm, based on the
configuration/calibration that is currently loaded. Especially, the upper / lower height range limit of the
configuration and the calibration data must match with the values used for the calculation of the height
map image.

Variant 2: grayToMm for 8-bit gray values

C++ int32_t I3Dapi::grayToMm (float &distinMm, unsigned char grayValue)

C# int cSharpWrapperApi:: grayToMm (float* distinMm, byte grayValue)

Input values:

dispInMm — float that stores the distance value in mm, which is the distance between object surface
and camera.

grayValue — the 8-bit intensity value in height map to be converted into distance value in mm.

Return values:

CS-3D-Api 43

u-"i chromasens

.
a Imaging for Professionals
.
n
w

Function returns 0 on no error, <0 otherwise.

Description:
This function behaves like grayToMm variant 1, except that the gray value is in 8-bit.

6.6.5 dispToMm

Variant 1: dispToMm with integer relative disparity values

C++ int32_t 13Dapi::dispToMm (float &distinMm, int32_t dispValue, bool
absoluteDistance=true)

C# int cSharpWrapperApi:: dispToMm (float* distinMm, int dispValue, bool
absoluteDistance)

Input values:

distinMm — float to store the distance value in mm, which is the distance between object surface and
camera or object surface and FWD.

dispValue — the relative disparity value, which refers to the difference in pixels of same physical
locations between two stereo images. The relative disparity value of locations at working distance is
around 0. For locations further or closer to the camera than the working distance, the relative disparity
value is negative or positive.

absoluteDistance — optional, default is true, means distance to camera is returned. False means the
distance to a plane in FWD is returned.

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function converts a relative disparity value in pixels to a distance in mm, based on the
configuration/calibration that is currently loaded. This function can be used for instance to convert the
lower height range limit in pixels into a distance to the camera or into a distance to the plane in FWD.

Variant 2: dispToMm with float relative disparity values

C++ int32_t I3Dapi::dispToMm (float &distinMm, float dispValue, bool
absoluteDistance=true)

C# int cSharpWrapperApi:: dispToMm (float* distinMm, float dispValue, bool
absoluteDistance)

Input values:

distinMm — float to store the distance value in mm, which is the distance between object surface and
camera.

dispValue — the relative disparity value, which refers to the difference in pixels of same physical
locations between two stereo images. The relative disparity value of locations at working distance is
around 0. For locations further or closer to the camera than the working distance, the relative disparity
value is negative or positive.

absoluteDistance — optional, default is true, means distance to camera is returned. False means the
distance to a plane in FWD is returned.

Return values:

44 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

n
w
Function returns 0 on no error, <0 otherwise.

Description:
This function behaves like dispToMm variant 1, except that the relative disparity value is float.

6.6.6 mmToDisp

Variant 1: mmToDisp with integer relative disparity values

C++ int32_t 13Dapi::mmToDisp (int32_t &dispValue, float distinMm, bool
absoluteDistance=true)

C# int cSharpWrapperApi:: mmToDisp (int* dispValue, float distinMm, bool
absoluteDistance)

Input values:
dispValue —int to store the relative disparity value.
distinMm — distance value to be converted into relative disparity value.

absoluteDistance — optional, default is true, means distance to camera is given. False means the
distance to a plane in FWD is given.

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function converts a distance value in mm into a relative disparity value in pixels, based on the
configuration/calibration that is currently loaded. This function can be used for instance to convert a
distance to the camera or a distance to the plane in WD/FWD into a value that can be used as the
upper height range limit in pixels.

Variant 2: mmToDisp with float relative disparity values

C++ int32_t I3Dapi::mmToDisp (float &dispValue, float distinMm, bool
absoluteDistance=true)

C# int cSharpWrapperApi:: mmToDisp (float* dispValue, float distinMm, bool
absoluteDistance)

Input values:
dispValue —float to store the relative disparity value.
distinMm — distance value to be converted into relative disparity value.

absoluteDistance — optional, default is true, means distance to camera is given. False means the
distance to a plane in FWD is given.

Return values:
Function returns 0 on no error, <0 otherwise.

Description:
This function behaves like mmToDisp variant 1, except that the relative disparity value is float.

CS-3D-Api

u-"i chromasens

.
a Imaging for Professionals
.
n
w

6.6.7 setSrcimgindex

C++ int32_t 13Dapi::setSrcimgindex (uint32_t SimgNr)
C# int cSharpWrapperApi:: setSrcimglindex (uint imgNr)

Input values:
imgNr — Start image number to use.

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function sets the internal image number that is also returned by the getNextimgBlocking function
to the given value. If not set, the image counter starts with zero. This function has to be called AFTER
the API is initialized. Initialize or reinitialize functions will reset the image counter to zero.

6.6.8 getApiMemorylnformation

C++ int32_t 13Dapi::getApiMemorylnformation (config3DApi* cfg, int32_t imgWidth, int32_t
imgHeight, bool maskPresent, int32_t &cpuRamNeeded, int32_t &gpuRamNeeded)

C# int cSharpWrapperApi::getApiMemoryInformation (int imgWidth, int imgHeight, bool
maskPresent, int* cpouRamNeeded, int* gpuRamNeeded)

int cSharpWrapperApi::getApiMemorylnformationFromConfig
(cSharpWrapper::CS3Dconfig cfg, int imgWidth, int imgHeight, bool maskPresent, int*
cpuRamNeeded, int* gpuRamNeeded)

Input values:

cfg — configuration to use for the estimation of memory usage. If this parameter is not given in C#, the
current configuration will be used for estimation.

imgWidth — source image width.

imgHeight — source image height.

maskPresent — whether to use mask for marking computation areas in the source image. If set to true,
more memory is needed in both CPU and GPU.

cpuRamNeeded — integer to store needed CPU memory in MB.
gpuRamNeeded — integer to store needed GPU memory in MB.

Return values:
Function returns 0 on no error, <0 otherwise.

Description:

This function provides estimated CPU and GPU RAM usage for a given configuration and image
height and width.

For the C#-version, if a configuration is not given, then the current active configuration file is used for
the estimation. Otherwise the estimation will be based on the given configuration.

46 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

6.6.9 verifyCalibration

Variant 1: using pointer of source image buffer as a parameter

C++ int32_t I13Dapi::verifyCalibration (unsigned char* ptrA, unsigned char* ptrB = NULL)

C# int cSharpWrapperApi::verifyCalibration(byte* imPtrA, byte* imPtrB)

Input values:
ptrA — pointer to a source image buffer from camera A.

ptrB — pointer to a source image buffer from camera B. By default, this pointer is set to NULL in case
of single camera systems.

Return values:
0 if no error, <0 otherwise.

Possible errors:

CS3D_SUCESS
CS3D_CANT_START_SYSTEM
CS3D_FUNCTION_NA
CS3D_WARN_CALIB_NOT_VALID ANYMORE
CS3D_CALIB_VERIFICATION_FAILED

Description:

This function verifies if the current calibration is still valid for the current status of the camera. Raw
image data will be passed as parameter, so please make sure to call setSrcimglinfo() (6.4.1)
previously before using verifyCalibration().

Variant 2: using source image filename as parameter

C++ int32_t 13Dapi::verifyCalibrationWithFileName (const char* cameraAFilename, const
char* cameraBFilename = NULL)

C# int cSharpWrapperApi::verifyCalibrationWithimageFileName (string cameraAFilename,
string cameraBFilename)

Input values:
cameraAFilename — filename (including path) from camera A, which will be used for verification.

cameraBFilename — filename (including path) from camera B, which will be used for verification. By
default, this pointer is set to NULL in case of single camera systems.

Return values:
0 if no error, <0 otherwise.

Description:

Just like verifyCalibration() in 6.6.9, this function verifies if the current calibration is still valid for the
current status of the camera.

6.6.10 adjustCalibration

Variant 1: overwite the old calibration file

C++ int32_t I3Dapi::adjustCalibration (unsigned char* ptrA, unsigned char* ptrB = NULL)

C# int cSharpWrapperApi::adjustCalibration(byte* imPtrA, byte* imPtrB)

CS-3D-Api 47

u-"i chromasens

.
a Imaging for Professionals
.
n
w

Input values:
ptrA — pointer to a source image buffer from camera A.

ptrB — pointer to a source image buffer from camera B. By default, this pointer is set to NULL in case
of single camera systems.

Return values:
0 if no error, <0 otherwise.

Possible errors:

CS3D_SUCESS
CS3D_SYSTEM_ALREADY_STARTED
CS3D_CANT_START_SYSTEM
CS3D_FUNCTION_NA
CS3D_CALIB_VERIFICATION_FAILED

Description:

This function does not only verify the calibration, but also adjust the calibration to improve the
calculation precision afterwards. The old calibration file will be overwritten after execution. For the
same reason like verifyCalibration 6.6.9, setSrcimginfo() has to be called previously.

Variant 2: create a new calibration file instead of overwriting the old one

C++ int32_t 13Dapi::adjustCalibration (const char* targetFilename, unsigned char* ptrA,
unsigned char* ptrB = NULL)
C# int cSharpWrapperApi::adjustCalibration(string targetFilename, byte* imPtrA, byte*
imPtrB)
Input values:

targetFilename — filename (incl. path) of the generated new calibration file.
ptrA — pointer to a source image buffer from camera A.

ptrB — pointer to a source image buffer from camera B. By default, this pointer is set to NULL in case
of single camera systems.

Return values:
0 if no error, <0 otherwise.

Description:

Just like variant 1 of adjustCalibration(), variant 2 adjusts the calibration and saves the generated file
to a new file instead of overwriting the old one.

6.6.11 errorToString

C++ int32_t I3Dapi::errorToString (char* errStrBuff, int32_t buffLen, int32_t &errStrLen,
int32_t errCode, const char* language)

C# int cSharpWrapperApi:: errorToString(ref string errStrBuff, int buffLen, ref int errStrLen,
int errCode, string language)

48 CS-3D-Api

“# chromasens

. a Imaging for Professionals
-

Input values:

errStrBuff — in C++, it is a pointer to char array buffer which holds the returned error string. In C#, it is
directly the returned error message.

buffLen — size of the char array buffer.

errStrLen — actual length of the returned error string.

errCode — input error code whose corresponding error string is to be queried.

Language — language of the error string. Currently English “EN” and Chinese “ZH” are supported.

Return values:
0 if no error, <0 otherwise.

Description:

This function translates error codes into error message strings in different languages. Currently
English “EN” and Chinese “ZH” are supported. When language is set to “ZH”, the returned string is
utf8 encoded.

Helper functions for string conversion are available in C++ sample code.

6.6.12 staticCalibration

C++ int32_t 13Dapi::staticCalibration (CS3DStaticCalibrationResult * calibRes, unsigned
char* ptrA, unsigned char* ptrB = NULL, const char * tDef)

Input values:

calibRes — Pass an CS3DStaticCalibrationResult object that will be filled with information after the
function returns.

ptrA — pointer to a source image buffer from camera A.
ptrB — pointer to a source image buffer from camera B. Set to NULL in case of single camera systems.
tDef — filename that holds the definition of the target

Return values:
0 if no error, <0 otherwise.

calibRes.tx // translation along sensor axis in [mm]

calibRes.ty // translation along transport axis in [mm]

calibRes.tz // translation along distance axis in [mm]

calibRes.ry // beta / rotation around transport axis in [rad]
calibRes.rz // gamma / rotation around distance axis in [rad]
calibRes.targetID // string that holds the ID and serial number of the target
calibRes.rXX // 4x4 Transformation matrix that transforms each 3DPoint

in the coordinate system of the target.

Too To1 Toz 7To3

Tio 11 T2 T3

Too T21 T2 T3

T30 731 T32 TI33
Description:

Currently in BETA state. This function does a static calibration to enable the user to adjust the position
of the point cloud. A specific target is needed for this functionality. Be sure to set the image
information with setSrcimginfo() (6.4.1) before using the staticCalibration() function.

CS-3D-Api 49

l T

u-"i chromasens

.
a Imaging for Professionals
.
n
w

7 HALCON - Extension

There are HALCON extensions available for HALCON 12, 13 18.11,19.11, 20, 20.11, 21.05, 21.11,
22.05, 22.11 and 23.11 on Windows platforms. HALCON should be installed before the CS-3D
software is installed. To switch between the versions either use the CS-3D software installer or change
the path to the CS-3D HALCON Extension as explained in the HALCON documentation.

7.1 HALCON - Operator List

7.1.1 Control
7.1.1.1 create_cs_3d_handle

create_cs_3d_handle(‘config_file’, configFile, CS3Dhandle)

Input values:
configFile — String that contains path and name of the configuration file.

Return values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Description:

Does the initialization of the API with the configuration from the given configuration file. You can create
multiple instances.

7.1.1.2 clear_cs_3d_handle (CS3Dhandle)

clear_cs_3d_handle(CS3Dhandle)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Return values:
None.

Description:
Unloads a given instance and frees its allocated memory.

7.1.2 Configuration

50 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

7.1.2.1 cs_3d_load_config_from_camera

cs_3d_load_config_from_camera(CS3Dhandle, connectionType, port)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

ConnectionType — String to set the type of connection ‘RS232’ for serial connection via a (virtual) com
port. ‘CL’ for a connection via the framegrabber.

Port — Port number used for communication.

Return values:
None.

Description:
This function will load the configuration from a connected 3DPIXA.

7.1.2.2 cs_3d_save_config_to_camera

cs_3d_save_config_to_camera(CS3Dhandle, connectionType, port)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

ConnectionType — String to set the type of connection ‘RS232’ for serial connection via a (virtual) com
port. ‘CL’ for a connection via the framegrabber.

Port — Port number used for communication.

Return values:
None.

Description:
This function will save the current configuration to a connected 3DPIXA.

7.1.2.3 cs_3d_load_config from_file

cs_3d_load_config_from_file(CS3Dhandle, filename)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.
Filename — Filename to load the config from.

Return values:
None.

Description:
This function will load the configuration from a given file.

CS-3D-Api 51

3 chromasens

Imaging for Professionals
I

7.1.2.4 cs_3d_save_config to_file

cs_3d_save_config_to_file(CS3Dhandle, filename)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.
Filename — File to save the config to.

Return values:
None.

Description:
This function will save the current configuration to a given file.

7.1.2.5 cs_3d_set_param

cs_3d_set_param(CS3Dhandle, [parameterName, ...], [parameterValue, ...

)

Input values:

CS3Dhandle — Holds the handle for an instance of the CS-3D-API.
parameterName — Can hold one or a list of the parmeters mention below.
parameterValue — Holds one value for each of the given parameters.

Return values:

None.
Parameter Type ‘ Example ‘ Corresponding config entry
config_file String ‘C:/3D/config.ini’
height_range_start_in_px Integer -10 dStart
height_range_end_in_px Integer 10 dEnd
min_correlation_score Double 0.5 minBadKkf
max_Ir_pixels Double 10 Consistent
min_intensity Integer 1 darkR
max_intensity Integer 254 brightR
min_contrast Double 0.1 minStdA
window_type String “15x15’ Chapter 10.2.3.1 includes a list of
available size
timeout Integer 20000 Timeout for calculation in [ms]
52 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

| |
w
Description:

Sets one or more parameters to the given values. After that, an automatic reinitialisation is done, so if
you like to set more than one parameter it is recommended to do that in a single call of this operator to
avoid a reinitialization of the API every time you change a parameter.

If you pass a “config_file” parameter, other changes to the configuration will be ignored to avoid that
an accidental overwrite of the configuration is performed.

7.1.2.6 cs_3d_get_param

cs_3d_get param(CS3Dhandle, [parameterName, ...], resultTuple)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.
parameterName — Can hold one or a list of the parmeters mention in chapter 7.1.2.1.

Return values:
resultTuple — Holds one value for each parameter name passed as input.

Description:
This function gets one or more parameters in the configuration of the API instance.

7.1.2.7 c¢s_3d_roi_set

cs_3d_roi_set(CS3Dhandle, y1, x1, y2, x2)

Input values:

CS3Dhandle — Holds the handle for an instance of the CS-3D-API.
Y1 —Y coordinate of the upper left corner of the ROI

x1 — X coordinate of the upper left corner of the ROI

y2 — Y coordinate of the lower right corner of the ROI

x2 — X coordinate of the lower right corner of the ROI

Return values:
None.

Description:

This function sets a ROI for the calculation of the 3D data. Before the ROl is used it has to be
activated using the cs_3d_roi_enable function.

7.1.2.8 cs_3d_roi_get

cs_3d_roi_get(CS3Dhandle, y1, x1, y2, x2)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

CS-3D-Api 53

3 chromasens

a | A Imaging for Professionals

-I
Return values:
y1 =Y coordinate of the upper left corner of the ROI
x1 — X coordinate of the upper left corner of the ROI
y2 — Y coordinate of the lower right corner of the ROI
x2 — X coordinate of the lower right corner of the ROI

Description:
This function returns the parameter for a set ROI.

7.1.2.9 c¢s_3d_roi_enable

cs_3d_roi_enable(CS3Dhandle)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Return values:
None.

Description:
This function enables the usage of a set ROI for the calculation of the 3D data.

7.1.2.10 cs_3d_roi_disable

cs_3d_roi_disable(CS3Dhandle)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Return values:
None.

Description:
This function disables the usage of a set ROI for the calculation of the 3D data

7.1.3 Calculation

7.1.3.1 cs_3d_acquire_image

cs_3d_acquire_image(Im, CS3Dhandle)

Input values:
Im — A single image in case of a compact camera or a tuple of images in case of a dual camera.
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

54 CS-3D-Api

*-'.9
&+ chromasens

-3 . .
m Imaging for Professionals
-

Return values:
None.

Description:

This function loads the source image(s) into the API. It must be executed before cs_3d_stereo 7.1.3.2.
After a parameter is changed, this operator can take longer time because the API is started before the
new image is loaded into the API.

7.1.3.2 cs_3d_stereo

cs_3d_stereo(Heightmap, Rect, P3D, CS3Dhandle, ObjectModel3D)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Return values:

Heightmap — 16 bit gray scale image that contains the scaled height information. 8.2.2

Rect — 8 bit gray/color rectified image. Number of channels depends on the source input image. 8.2.1
P3D — 3 channel float image that contains the X, Y and Z coordinates of a 3D point cloud. 8.2.3

ObjectModel3D — Contains a 3D Model that can be processed by the sample_object model_3d
HALCON operator.

Description:
This function blocks up to TIMEOUT milliseconds until next results are ready.

7.1.3.3 c¢s_3d_get_result

cs_3d_get _result(Resultimage, CS3Dhandle, ResultType)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.
ResultType — Choose one of the types from the list below

ResultType ‘ Data Type ‘ Description

rectified Image (1or 3x8bit) | Same like the rectified from cs_3d_stereo
rectified_B Image (1or 3x8bit) | Rectified image from second camera
confidence_map Image (32bit) Confidence map according to chapter 8.2.4
height_map Image (16bit) Same like the height map from cs_3d_stereo
P3D_array Image (3x32bit) Same like the P3D from cs_3d_stereo

Return values:
Resultimage — Holds one or more results.

CS-3D-Api 55

u-"i chromasens

.
a Imaging for Professionals
.
n
w

Description:

This function provides additional results from the 3D calculation. It must be called after cs_3d_stereo
(7.1.3.2) and before the next cs_3d_acquire (7.1.3.1).

7.1.3.4 c¢s_3d_cancel

cs_3d_cancel(CS3Dhandle)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Return values:
None.

Description:
Cancels a running calculation. A blocked cs_3d_stereo operator will return immediately.

7.1.3.5 c¢s_3d_rawimagecoord_to_3d

cs_3d_rawimagecoord_to_3d(CS3Dhandle, color_channel, image_height, ay, ax, by, bx, X, Y, Z)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Color_channel — Color channel of the coordinates, can be ‘red’, ‘green’ or ‘blue’. This is only relevant if
you use a version 2 calibration. If you use a version 1 calibration just use channel ‘green’.

Image_height — Sets the image height to a specific height, different from the one set in the API. If you
want to use the height set in the API use ‘-1’

Ay — One or more row coordinates from image A. Unit is px.
Ax — One or more column coordinates from image A. Unit is px.
By — One or more row coordinates from image B. Unit is px.
Bx — One or more column coordinates from image B. Unit is px.

Return values:

X — The resulting X coordinates. Unit is mm.
Y — The resulting Y coordinates. Unit is mm.
Z — The resulting Z coordinates. Unit is mm.

Description:
This function will generate 3D points from pairs of row/col coordinates of the source images.

7.1.3.6 cs_3d_rectimagecoord_to_3d

cs_3d_rectimagecoord_to_3d(CS3Dhandle, image_height, ay, ax, by, bx, X, Y, Z)

56 CS-3D-Api

u-" chromasens

L
" Imaging for Professionals
.

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Image_height — Sets the image height to a specific height, different from the one set in the API. If you
want to use the height set in the APl use ‘-1’

Ay — One or more row coordinates from image A. Unit is px.
Ax — One or more column coordinates from image A. Unit is px.
By — One or more row coordinates from image B. Unit is px.
Bx — One or more column coordinates from image B. Unit is px.

Return values:
X — The resulting X coordinates. Unit is mm.
Y — The resulting Y coordinates. Unit is mm.

Z — The resulting Z coordinates. Unit is mm.

Description:
This function will generate 3D points from pairs of row/col coordinates of the rectified images.

7.1.3.7 cs_3d_rawimagecoord_to_rectcoord

cs_3d_rawimagecoord_to_rectcoord(CS3Dhandle, color_channel, rawY, rawX, cameraNr, rectY,
rectX)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Color_channel — Color channel of the coordinates, can be ‘red’, ‘green’ or ‘blue’. This is only relevant if
you use a version 2 calibration. If you use a version 1 calibration just use channel ‘green’.

rawY — One or more row coordinates from raw image. Unit is px.
rawX — One or more column coordinates from raw image. Unit is px.
cameraNr — Camera number, 0 for master, 1 for slave camera. For compact cameras always 0

Return values:

rectY — The resulting row coordinates. Unit is px.
rectX — The resulting column coordinates. Unit is px.

Description:

This function converts a pair of image coordinates of the raw/source image to a pair of coordinates of
the rectified image.

7.1.3.8 c¢s_3d_gray_to_mm

cs_3d_gray _to_mm(CS3Dhandle, GrayValueType, [GrayValue, ...], DistancesInMm)

Input values:

CS-3D-Api 57

u-"i chromasens

.
a Imaging for Professionals
.
n
w

CS3Dhandle — Holds the handle for an instance of the CS-3D-API.
GrayValueType — “16bit’ or ‘8bit’, set according to bpp of the height map image the gray value is from.
GrayValue — One or more gray values

Return values:
DistancelnMm — Returns a tuple of distances.

Description:
This function returns for a given gray value the distance to the camera in mm.

7.1.3.9 c¢s_3d_gray_to_3d

cs_3d_gray_to_3d(CS3Dhandle, imageheight, inY, inX, grayType, grayValue, X, Y, Z)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

ImageHeight — Sets the image height to a specific height, different from the one set in the API. If you
want to use the height set in the APl use ‘-1’

inY — One or more row coordinates from height image. Unit is px.

inX — One or more column coordinates from height image. Unit is px.

GrayType — “16bit’ or ‘8bit’, set according to bpp of the height map image the gray value is from.
GrayValue — One or more gray values

Return values:

X — The resulting X coordinates. Unit is mm.
Y — The resulting Y coordinates. Unit is mm.
Z — The resulting Z coordinates. Unit is mm.

Description:

This function returns for given gray values and their positions in the height image the distance to the
camera in mm.

7.1.3.10 cs_3d_px_to_mm

cs_3d_px_to_mm(CS3Dhandle, DistanceType, PxValue, DistancelnMm)

Input values:

CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

DistanceType — ‘distance_to_zero plane’ means convert the [px] to [mm] relative to the zero plane.
‘distance_ FWD’ means convert the [px] to [mm] relative to the FWD position at the
camera.

PxValue — Shift in pixels [px]

Return values:
DistancelnMm — Returns a tuple of distances in [mm].

58 CS-3D-Api

:.r" chromasens

L
. Imaging for Professionals
.

Description:

This function returns for given shifts in [px] the distance of DistanceType. The shift in [px] is “0” at
WD/zero-plane, negative below the zero plane and positive above the zero-plane. For further
information see chapter 8.2.2, 8.2.3. This function can e.g. be used to convert the start/end of the
search range from [px] to [mm].

7.1.3.11 c¢s _3d_mm_to_px

cs_3d_mm_to_px(CS3Dhandle, DistanceType, DistancelnMm, PxValue)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

DistanceType — ‘distance_to_zero_plane’ means convert the [mm] relative to the zero-plane to [px] to.

‘distance_ FWD’ means convert the [mm] relative to the FWD position at the
camera to [px].
DistancelnMm — Tuple of distances in [mm].

Return values:
PxValue — Shifts in pixels [px]

Description:

This function returns for given shifts in [px] the distance of DistanceType. The shift in [px] is “0” at
WD/zero-plane, negative below the zero plane and positive above the zero-plane. For further
information see chapter 8.2.2, 8.2.3. This function can e.g. be used to convert the start/end of the
search range from [mm] to [px].

7.1.4 Miscellaneous

7.1.4.1 cs_3d_get_version

cs_3d_get version(CS3Dhandle, MajorVersion, MinorVersion, BuildVersion)

Input values:
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Return values:

MajorVersion — Major software version.
MinorVersion — Minor software version.
BuildVersion — Software build.

Description:
This function returns information about the CS-3D software version.

CS-3D-Api

59

l T

u-"i chromasens

.
a Imaging for Professionals
.
n
w

7.1.4.2 cs _3d_adjust_calibration

cs_3d_adjust_calibration(iIm, CS3Dhandle)

Input values:
Im — A single image in case of a compact camera or a tuple of images in case of a dual camera.
CS3Dhandle — Holds the handle for an instance of the CS-3D-API.

Return values:
None

Description:

This function adjusts the calibration based on raw image(s) of an object. Overwrites the current
calibration.

7.2 .NET/C++ Version of HALCON extension

There is also a C# and a C++ version of the CS-3D HALCON extension available.

The .NET wrapper is available at {appDir}\extensions\HALCON\{HALCON version\CS3D\bin\dotnet
The C++ version is available at {appDir}\extensions\HALCON\{HALCON version\CS3D\bin\x64-win64

REMARK: Do NOT copy or move *.dll files to any other location. According to the HALCON
documentation this will cause in a non-function HALCON extension. If you need to put the program
that depends on that dlls outside this directory, Please add the
{appDir}\extensions\HALCON\{HALCON version\CS3D\bin\x64-win64 to the system PATH variable.

60 CS-3D-Api

uﬁ chromasens

Imaging for Professionals

8 Image Format

8.1 Source Image Format

The image starts with the upper left pixel. We assume a number of width * height pixels with bpp bits
per pixel.

8.1.1 Single Channel Image

8-bit single channel (gray) images are supported. The information about the image has to be set with
the setSrcimglinfo. The channel order has to be set to CO_GRAY and the
numChannelsUsedForCalculation parameter has to be set to 1. In that case only IMG_OUT_GRAY as
rectified image is available.

8.1.2 3-Channel Image

As input format, a “raw” format is used to reduce the overhead. We expect the pixel order to be BGR,
RGB, RGBA or BGRA with one byte per channel for each pixel for 8-bit interleaved data storage. In
addition plane based storage for BGR and RGB channel order is accepted too.

The functions to set the source image information are setSrcimginfo and setSrcimgChannelOrder.

The following example shows how the data is positioned in a typical source image with interleaved
BGR-order. The data starts with the upper left pixel of the image and is scanned line by line from left
to right. Every pixel has 3 channels, and each channel has one byte.

Pixel (N-1) Pixel (N) Pixel (N+1)

In another example the data is positioned in a plane based BGR-order where each channel is stored
in a separate data block, which allows faster per channel operations.

B B B
G G G
R R R

8.1.3 Select Single Channel of 3-Channel Image for Processing

The parameters numChannelsUsedForCalculation and intensityChannelUsed of the configuration can
be adjusted to use all three channels or a single color channel for the calculation.

numChannelsUsedForCalculation = 3 The image data from all three channels will
be processed. If there exist an alpha

intensityChannelUsed will not be considered channel, the alpha channel will be ignored

numChannelsUsedForCalculation = 1 The image data from the first, second or
third channel will be processed.

intensityChannelUsed = 0, 1 or 2

CS-3D-Api 61

3 chromasens

@ a Imaging for Professionals
v
8.2 Destination Image Format
Image type Buffer- Description
type

IMG OUT DISP unsigned The output image is a 16-bit height map image. Each

B B short pixel is a 16-bit height value that has a linear relation
to the distance between camera and object-surface.

IMG OUT DISP 8BIT unsigned Like IMG_OUT_DISP but an 8-bit height map image.

char

IMG OUT RGB unsigned Output image is a rectified RGB image. One unsigned

- - char char per pixel and channel with an order of RGB.
IMG OUT BGR unsigned Output image is a rectified BGR image. One unsigned
- - char char per pixel and channel with an order of BGR.
IMG OUT RGBA unsigned Output image is a rectified RGBA image. One
- B char unsigned char per pixel and channel with an order of
RGBA.
IMG OUT BGRA unsigned Output image is a rectified BGRA image. One
- - char unsigned char per pixel and channel with an order of
BGRA.
IMG OUT BGR2 unsigned Output image is the second rectified BGR image. One
- B char unsigned char per pixel and channel with an order of
BGR.

IMG OUT GRAY unsigned Output image is a rectified single channel (gray)

- B char image. One unsigned char per pixel and channel.

IMG OUT GRAY2 unsigned Output image is the second rectified single channel

- - char (gray) image. One unsigned char per pixel and
channel.

IMG_OUT_P3D float Output image is an array of 3D points. For each
camera pixel (PX,PY) the corresponding coordinate in
3D-space (X,Y,Z) with 32-bit accuracy is given

IMG_OUT_CONF_8BIT unsigned Output image is an 8-bit confidence map image. Each

char pixel is a confidence value scaled to 8-bit numerical
range [0,255] which provides a measure of the
likelihood for the height calculation at this pixel
position to be correct.

IMG_OUT_CONF_FLOAT | float Output image is a 32-bit float confidence map image.
Each pixel is a confidence value between [0, 1] which
provides a measure of the likelihood for the height
calculation at this pixel position to be correct.

IMG_OUT_RGB2 unsigned Output image is the second rectified RGB image. One

char unsigned char per pixel and channel with an order of
RGB.
IMG_OUT_BGR_PLANES | unsigned Output image is a rectified BGR image in plane based
char channel order. One unsigned char per pixel and
channel with an order of BGR (planes).

IMG_OUT_RGB_PLANES | unsigned Output image is a rectified RGB image in plane based

char channel order. One unsigned char per pixel and

62

CS-3D-Api

u-"f chromasens

Imaging for Professionals

channel with an order of RGB (planes).

IMG_OUT_BGR2_PLANES | unsigned Output image is the second BGR image in plane
char based channel order. One unsigned char per pixel and
channel with an order of BGR (planes).

IMG_OUT_RGB2_PLANES | unsigned Output image is the second RGB image in plane
char based channel order. One unsigned char per pixel and
channel with an order of RGB (planes).

8.2.1 Rectified Image - IMG_OUT_R*/ IMG_OUT_B*/ IMG_OUT_GRAY

The raw image(s) taken from the camera are preprocessed before the height calculation is done. The
rectified image is the preprocessed image of camera A that matches the height map image and the
point cloud in terms of point positions. So the rectified image at pixel position (x1, y1) holds the color
information for the height or the point at the same position of the corresponding result. The output is a
1-dimensional array of unsigned chars, in which every char represents a color channel. (e.g.
IMG_OUT_BGR means 3 channels in sequence B, G, R. IMG_OUT_RGBA has 4 channels while
IMG_OUT_GRAY has only one channel. The default image type of a rectified image is
IMG_OUT_BGR.

Pixel (N-1) Pixel (N) Pixel(N+1)

uchar uchar uchar uchar uchar uchar uchar uchar uchar

8.2.2 8bit- /16 bit - Height Map Image - IMG_OUT_DISP /
IMG_OUT_DISP_8BIT

The following diagram shows how a height map is built. Within the free working distance (in which a
good image can be acquired), a height range can be set to define the processing area. This area will
be scaled to 16 bit with 65535 grayscale values or 8 bit with 255 grayscale values. Within the
processing area, all height values can be assigned to the corresponding grayscale values. The default
image type of a height map image is IMG_OUT_DISP. IMG_OUT_DISP_8BIT will be used to generate
an 8 bit height map.

CS-3D-Api 63

ﬁ chromasens

@ a Imaging for Professionals
v

3DPIXA 65635 = 21

or 255=2 -1

_——--

25

L o

(D -
o
free =L
working %- =
distance z5

3@
T S,
T.

x
I A i e
% -

] depth of field
depth of field
1

0 = no data

The output is a 1-dimensional array of unsigned chars / unsigned shorts, where there is one grayscale
value for each pixel of the rectified output image. The values are ordered row by row from left to right
and from top to bottom.

The height in mm can be calculated using the API grayToMm functions. The matching configuration /
calibration must be loaded.

Pixel (N-1) Pixel (N) Pixel (N+1)

unsigned short unsigned short unsigned short

64 CS-3D-Api

*-'.9
&+ chromasens

. -l.. Imaging for Professionals
.
8.2.3 Point Cloud - IMG_OUT_P3D
3DPIXA
lens1 lens2
--F
I
I
z (thm) mm
free y (mm) Point cloud
working coordinate system
distance
-/ X (mm)
(0,0,0)
Free working dirsec;inonr:ng

distance plane

The diagram above shows the point cloud world coordinate system. X axis corresponds to point
position in mm along sensor direction, y axis corresponds to point position in mm in scanning
direction, and z axis corresponds to distance in mm from object surface to the free working distance
plane. The origin (0, 0, 0) is placed in the middle between both lenses in the free working distance to
the camera. The points in the left part of the image have negative X coordinates, and in the right part
they have positive values. In the upper part they have positive Y coordinates and in the lower part they
have negative ones. The Z coordinates further away than the free working distance from the camera
are negative, and the ones closer are positive. The Y and Z coordinates of the 3D points from the
Chromasens HALCON extension have an inverted sign to be compatible with the built-in HALCON
functions.

Image type IMG_OUT_P3D will be used to generate a point cloud. The output is a 1-dimensional array
of floats. The x-, y-, z-coordinates in the space can also be calculated from the height map image
using the grayTo3D (6.5.11) function or from both raw images using the rawlmageCoordinatesTo3D
(6.5.8).

Point (N-1) Point (N) Point (N+1)
X-pos y-pos Z-pos X-pos y-pos Z-pos X-pos y-pos Z-pos
float float float float float float float float float

8.2.4 8bit- /float - Confidence Map Image - IMG_OUT_CONF_8BIT /
IMG_OUT_CONF_FLOAT

Confidence map provides a measure of the likelihood at each pixel position for the height calculation
to be correct. Image type IMG_OUT_CONF_FLOAT is used to generate a 32-bit float confidence map
image, where each pixel value is in range [0, 1]. Image type IMG_OUT_CONF_8BIT is used to
generate an 8-bit confidence map image, where each pixel value is scaled to range [0, 255]. Larger
value in the confidence map indicates that the corresponding height calculation in the height map and
point cloud is more confident, and vice versa. Parameter doCalcConfMap in config must be set to 1 in
order to output 8-bit/float confidence map. The correlation factor, parameter “minBadKkf” 10.2.3, is the
minimum confidence required to calculate an height value. Areas in the confidence and the height
map with an confidence below the correlation factor threshold are set to ‘0’.

CS-3D-Api 65

3 chromasens

- Imaging for Professionals
-
w

8.3 Central View / Perspective Correction

With Version 2.3 of the CS-3D-API the central view feature is introduced to the API in a BETA state.
This feature corrects the perspective distortion that is generated because of the viewing angles of both
cameras. It is already fully working with rawlmageCoordinatesTo3D function. If the feature is used with
the dense output of points using the getLastimage function there can be some artifacts that will be
removed in the future.

This feature can be activated using the “enableCombinedView = 1” configuration parameter. Also the
calibration of the 3DPIXA that is used has to be at least version 2.1

66 CS-3D-Api

uﬁ chromasens

Imaging for Professionals
|]

| 3
Without perspective
correction / central view
Physical setup Rectified / height image

[

3DPIXA

With perspective correction /
central view

Physical setup Rectified / height image

[

3DPIXA

- ©

CS-3D-Api

3 chromasens

« @ a Imaging for Professionals
n
"

9 Image Size

With the 3DPIXA we ship a calibration file and a configuration file. The width of the images that can be
processed by the CS-3D-Api is fixed for the specific camera. So always the complete image in width
has to be passed to the API, while the image height can be flexible.

If you are interested in a small part of the image, please use the ROI functions 6.4.14 t0 6.4.18 .

The height of the images is only restricted by the used frame grabber and/or the available amount of
PC/GPU RAM. The height of the image has to be set through the function 6.4.1. For more information
about the configuration please refer to chapter 10.

68 CS-3D-Api

ir"f chromasens

M Imaging for Professionals

10 Configuration

A configuration and a calibration file are shipped with our cameras. The system specific designed
calibration-file should not be touched without explicit demand.

The configuration file contains a set of default parameters as initial setting. These parameters can be
adjusted to user-specific needs, e.g. file paths, through the APl or with any text-editor. Some
parameters are not listed in the initial configuration file, which the user can access and adjust (if
writable) via API. The default windows-ini format is used for compatibility reasons.

The configuration file can be in any place on the hard-disk, but the path to the calibration file has to be
adjusted. If the calibration file is in the same folder like the configuration file setting the
“calibrationFile”-parameter to the filename without the path is sufficient.

10.1 Configuration via API

To alter the configuration via API, you first have to get a copy of the active config3DApi-Object with the
I3DApi::getConfig (6.3.1) or I3DApi::getActiveConfig (6.3.5) function. Then you can directly access
different parameters through the object. For each parameter there is a description in Section 10.2. The
manipulated configuration object can now be used with the initialization function 6.2.1 or set as the
new configuration with I3DApi::setConfig function (6.3.2) followed by a call of I3DApi::reinitialize
(6.2.2). After that the configuration can be saved to a given file.

Starting with version 2.4a, a new configuration parameter called “enableDynamicConfiguration” has
been introduced that allows changes to some disparity calculation parameters without the need to
reinitialize the API. To activate this feature, set the “enableDynamicConfiguration” parameter (or add it
if it doesn’t exist yet) in your configuration file to “1”. Afterwards get a copy of the configuration like
before, change parameters as desired and set this configuration object via the I3DApi::setConfig
function (6.3.2). In this case, initialization is still required but will only apply calculation parameters that
were changed — see also the “enableDynamicConfiguration” section in chapter 10.2.2 Control
parameters for a list of possible parameters.

Usage of the “enableDynamicConfiguration” parameter is recommended in situations where
calculation parameters need to be changed while the 3D-API is running.

10.2 Parameter Descriptions

10.2.1 General Parameters

These parameters show general setting of the API calculation, calibration related or camera specific
information. Most parameters cannot be modified.

Parameter Example | Acc Description
value ess
calibrationFile calibration. | R/W | Path and filename of provided calibration file
ini
configFile “C:\data\co | R Path and filename of the currently loaded
nfig.ini” configuration file
dataSource DATASOU | R This parameter shows from where the current
RCE_DIS configuration file is loaded (i.e. from disk or from
K camera). The possible values are
DATASOURCE_DISK and DATASOURCE_CAM
cameraType CP000470 | R Type (product ID) of the camera
-C01-015-
0040
numCams 1 R Number of physical cameras used.

CS-3D-Api 69

ﬁ chromasens

@ Imaging for Professionals
-'-'
1, for single camera system
2, for dual camera system
imgWidth 3648 Image width of sensor of one (virtual) camera Unit is
pX.
imgHeight 4000 Image height of sensor. Unit is px
offsetimageA 0 The offset where the Api begins interpreting the
source image as an image of camera A. Unit is px.
offsetimageB 3648 The offset where the Api begins interpreting the
source image as an image of camera B. Unit is px.
workingDistance 199.8 Calibrated working distance of this camera type.
freeWorkingDistance | 99.6 Calibrated free working distance of this camera type.
resolutionX 0.015 Resolution of the system in X direction. Unit is mm per
pX.
resolutionY 0.015 Resolution of the system in transport direction. Unit is
mm per px.
serialnumber 207 Serial number of the sensor
calibrationVersion 2 Version of the calibration file
heightRangeLimitinP | [-60,60] The height range within which the 3D calculation is
X very accurate. When parameter
enableHeightRangeLimit is set to 1, this limit is
applied, and when dStart or dEnd is beyond this limit,
it will be automatically adjusted within the limit and a
warning will be issued, or an error will be reported.
When parameter enableHeightRangeLimit is set to 0,
this limit is ignored.
calibHeightRangeLim | [-120,120] The height range within which the 3D calculation is
itinPx possible, but the accuracy can be lower if the object
surface is scanned outside the height range defined
by heightRangeLimitinPx. This limit cannot be
switched off.
numWindowTypes 11 Number of possible window sizes
cudaDIIName[0] cudaRDT2 Name and path of dll for each window type. Eg. the
7x27.dll window size of this dll is 27x27 pixels in size
cudaDIIName[1] cudaRDT2
7x3.dll
cudaDIIName[2] cudaRDT1
5x15.dll
cudaDIIName[3] cudaRDT1
1x3.dll
cudaDIIName[4] cudaRDT9
x9.dll

cudaDIlIName]...]

70

CS-3D-Api

10.2.2 Control parameters

uﬁ chromasens

Imaging for Professionals

These parameters control the behavior of the 3D calculation, and correspond to the user image

acquisition settings and calculation requirements.

Parameter Example Acc Description
value ess

logFile C:\templlog.txt | R/W | Path to text file for log output. If not present or set
to empty string, log will be output to
OutputDebugString (win32) or console (linux)

doCalc3DPoints 1 R/W | Set to “0” if you want to disable the calculation of
the 3D point cloud.

doCalcRectifiedimag | 1 R/W | Set to “0” if you want to disable the calculation of

e the rectified/texture image. This rectified/texture
image is calculated from image captured by
camera A.

doCalcRectifiedlmag | 0 R/W | Setto “1” if you want to have the second

eB rectified/texture image from camera B.

doCalcConfMap 0 R/W | Setto “1” if you want to enable the calculation of
the 8-bit or float confidence map image.

doCalcHeightimage 1 R/W | Set to “0” if you want to disable the calculation of
the height image. This also disables the
calculation of the point cloud.

enableCombinedVie | 0 R/W | Setto “1” if you want to enable the central view /

w perspective correction feature. To enable this
feature, the calibration version needs to be at
least 2.1. (Chapter 8.3)

numChannelsUsedF | 3 R/W | Number of channels of the image used for

orCalculation calculation. Currently only 1 or 3 are valid options.
If an alpha-channel is present it is always ignored.
(Chapter 8.1.3)

intensityChannelUse | 0 R/W | With this parameter users can choose which

d channel of the image (if it is RGB/BGR) is used for
the calculation of the height information. Only
used if numChannelsUsedForCalculation is set to
1.

%WiX:htEEDemOMOde 0 R/W | Setto “1” if you want to enable to automatically

nAUthError switch to demo mode if no dongle is present.

!nvertTransportDirect 0 R/W | If the image is acquired in the direction opposite to

ion the defined transport direction, this parameter has
to be set to “1”.

numGpus 1 R/W | Maximum number of GPUs used.

debug 0 R/W | To enable debug output set debug >0. in config

file this parameter is named “debug”.

To view the debug messages on Windows use
“DebugView” from
http://technet.microsoft.com/en-
us/sysinternals/bb896647.aspx

CS-3D-Api

7

http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

3 chromasens

!."

Imaging for Professionals

On Linux, all log output currently appears in the
console window.

useGpus][0]

R/W

useGpus][1]

R/W

For each used GPU the physical GPU number
must be assigned. Usually, the default values are
ok.

saveGpuRam

R/W

When set to 1 it reduces the GPU memory usage.
This is useful when running multiple instances of
the 3D-API while all of them share the same GPU
hardware.

The default value is 0.

cudaBlockSize

1024

R/W

Concurrent threads per multiprocessor using BM
algorithm: 512-2048 (default: 1024), must be a
multiple of 32 for optimal performance. Values will
be automatically adjusted to multiple of 32 and
clamped within the valid range if necessary.

gpuMemoryFreePerc
entage

20

R/W

The percentage of GPU memory to be spared free
when performing 3D calculation using SGM
algorithm to ensure normal GPU functionality.

The default value is 20.

enableHeightRangelL
imit

R/W

When set to 1, heightRangeLimitinPx is applied,
and when dStart or dEnd is beyond this limit, it will
be automatically adjusted to the limit, or an error
will be reported. heightRangeLimitinPx defines the
height range within which the 3D calculation is
very accurate.

Set this parameter to “0” if you want to use a
larger height range up to
calibHeightRangeLimitInPx. In this case, the
calculation accuracy can lower if the object
surface is scanned outside the height range
defined by heightRangeLimitinPx.

enableDynamicConfi
guration

R/W

When set to 1, this enables the option to allow
partial dynamic configuration changes without the
need to reinitialize the 3D-API. The dynamic
configuration changes are only supported by a
subset of calculation specific parameters, that are
listed below:

e dStart and dEnd

e brightR and darkR
e minStdA

e minBadKkf

e consistent

See chapter 10.2.3 Calculation Specific
Parameters for more information about these
parameters.

matchingMethod

BLOCK_MAT
CHING

R/W

Possible Values are
e BLOCK MATCHING

72

CS-3D-Api

Imaging for Professionals

u-"f chromasens

!-

e SEMI_GLOBAL_MATCHING

This parameter allows to switch the 3D
reconstruction method between block matching
and SGM.

More information on the Semi-Global Matching
method can be found in the “Technical-note_CS-
3D-API Semi-Global Matching_R1.pdf’ document.

heightRangeMode

DYNAMIC_RA
NGE

R/W

This parameter is used only if the
“SEMI_GLOBAL_MATCHING” matching method
is active

Possible Values are
e FIXED_RANGE
e DYNAMIC RANGE

With fixed height range, the internal disparity
search range is fixed to 128, starting from dStart,
and the output height map is truncated by dEnd.
Thus, the maximum height search range is 128
pixels. If the input height range (dEnd-dStart) is
larger than 128, input dEnd is ignored and set to
dStart+128 automatically.

With dynamic height range, any height range is
accepted for calculation, and height range is dEnd
- dStart.

p1

R/W

Penalty value for small disparity change (i.e. 1
pixel disparity).

Using a lower penalty for small changes permits
an adaptation to slanted or curved surfaces. p1 is
in range between 0 and 31. Default value is 7.

p2

100

R/W

Penalty for all larger disparity changes (i.e. larger
than 1 pixel disparity).

Penalizes discontinuities in height. Such
discontinuities are often visible as intensity
changes. It always has to be ensured that p2 =
p1. p2is in range between 0 and 127. Default
value is 100.

doCameralnfoBlockC
hecks

When set to 1, the API performs some additional
checks for the correctness of the provided input
images. The API checks are performed based on
the information from image info-blocks. The API
checks that,

¢ Input image(s) and the calibration file are
related

e In Dual camera setup, the master-slave
image pair are related to each other.

e In Dual camera setup, the master-slave
image pair is given in right order

e If one of the input images is vertically

CS-3D-Api

73

‘Yﬁ chromasens

Imaging for Professionals
I

inverted
e If all the input image lines are present

Please note that, in-order to perform these checks
the first line info block and each line info blocks
should be present in the input images.

10.2.3 Calculation Specific Parameters

These parameters specify calculation parameters and thresholds, and can influence the quality of the
results. For further information especially about the adjustment of the parameters, please refer to the
“CS-3D-Viewer Manual” chapter 6.

Parameter Description Default Unit
value
windowType Index of window that is used for the 3D | O
calculation. A List of all sizes can be found [0,1, .., 10]
in chapter 10.2.3.1
brightR Minimum gray level for height map calcu- | 3.0
lation [gray level]
darkR ngmum gray level for height map calcu- | 254.0 [gray level]
lation
minStdA Minimum contrast (standard deviation) 0.3 [without a unit]
minBadKkf Minimum correlation coefficient accepted 0.25 [without a unit]
consistent Maximum difference between LR and RL 1
matching [px]
dStart Lower height range limit (search start) -50 [px]
dEnd Upper height range limit (search end) 50 [px]
dy Vertical displacement 0.0]

[lines]
dispThreshErr Smallest height value 0.1 [without a unit]
heightResolutio | When set to 1, 3D calculation will speed up, | 0 [without a unit]
nReduction at the cost of certain degree of height

resolution reduction. This can be an
efficient way to increase the calculation
speed when the reduced height resolution
still fulfils the requirement of your
application.
10.2.3.1 Window Types
Number ‘ Name ‘ Width | Height
0 27x27 27 27
1 27x3 27 3
74 CS-3D-Api

‘Ziﬁ chromasens

Imaging for Professionals

2 15x15 15 15
3 11x3 11 3
4 9x9 9 9
5 7x7 7 7
6 5x5 5 5
7 3x3 3 3
8 11x11 11 11
9 13x13 13 13
10 21x21 21 21
11 7x27 7 27
12 49x49 49 49
13 99x99 99 99

10.3 System Parameters

For a detailed description of the system parameters and how to adjust them, please refer to “CS-3D-
Viewer Manual” chapter 7.

CS-3D-Api

75

3 chromasens

@ a Imaging for Professionals
v
11 Using the API

Generally speaking, the images can be processed in parallel or sequentially. The diagrams below
show the parallel processing scheme and sequential processing scheme respectively. In parallel
processing, the threads of image acquisition and calculation are independent of each other. In
sequential processing, the next image(s) will be acquired only if the processing of the previous

image(s) is finished.

Configuration

=

Thread 1: \ / Thread 2: \

Loading image Calculation

Figure 2: parallel image processing with API

76 CS-3D-Api

uﬁ chromasens

a Imaging for Professionals

Initialization

}

Configuration

‘ (Single thread \

i

e

Figure 3: sequential image processing with API

\2

CS-3D-Api 77

3 chromasens

Imaging for Professionals
I

11.1 Initialization

First we focus on the initialization of the APl and the handling of the configuration. The Chromasens
3D API uses the CS3D namespace. After loading the shared library and executing the API creator
function “CS3DApiCreate”, we can access the whole collection of functions of the API through this
object. An initial configuration file can be passed on creation or loaded afterwards using the
loadConfig function.

It is important to know that if you alter the configuration and want the changes to become active, you
have to set the new configuration via the I13DApi::setConfig function and call the I3DApi::reinitialize
function after that. Or you can do an initialization of the system directly via I3DApi::initialize (&cfg) and
pass a reference of the configuration object. Before (re-)initialization, the calculation has to be in the
stopped state.

/ Initialization \

[modify config]

tional]

I3DApi::loadConfig()
) 4
I3DApi::getConfig()

4

I3DApi::initialize(&cfg)

I3DApi::getConfig()

W
I3DApi::setConfig()

\ 4

I3DApi::reinitialize()

_ /

Configuration

Figure 4: Initialization Process

Initially, we must provide the API with image dimensions, number of channels, size of the source
image, as well as the bits per pixel and the line pitch.

Calling the start function starts the calculation. If no input image is set, the calculation threads are
idling. The calculation can be stopped using the stop function. With the I3DApi::stopBlocking()
function, the calculation stops before the actual requested calculation is finished

78 CS-3D-Api

chromasens

» 3 Imaging for Professionals

Initialization

ﬁnfiguration v \

e.g. Height / width / linePitch /
b

4‘ e.g. RGB(A)/BGR(A)
% define ROI

Set acquired images to the

API

Figure 5: Initialization Process

11.1.1 Example

#include <afxwin.h>

#include "..\helpers\helper.h"
#include "..\..\..\3dapi\includes\CS3DApiD1l.h"

#include <opencv\cv.h>
#include <opencv\highgui.h>

#include <iostream>

#if DEBUG

#tpragma comment(lib, "opencv_core248d.1ib")
#tpragma comment(lib, "opencv_highgui248d.1ib")
ttelse

#tpragma comment(lib, "opencv_core248.1ib")
#tpragma comment(lib, "opencv_highgui248.1ib")
ttendif

CS-3D-Api 79

‘?ﬁ chromasens

Imaging for Professionals
I

using namespace std;
using namespace CS3D;

I3DApi * m_p3dapi=NULL;

int const numCams=2;
int const numImgs=1;

int _tmain(int argc, wchar_t* argv[]) {

int widthIn@,heightIn@,channelsIn®@,bpp@,linePitcho;
int widthInl,heightInl,channelsInl,bppl,linePitchil;
long sizelIn®,sizelnl;

unsigned char* buffer[2];

cv::Mat inImg[numCams];

// Load 3D-Api D11

accessD110bj pAPI(&m_p3dapi,L"C:\\Program
Files\\Chromasens\\3D\\d11s\\CS3DApi64.d11l",

"CS3DApiCreate"”, "C:\\Users\\Public\\Documents\\Chromasens\\3D\\sample
images\\two camera system\\config.ini",0);

//check if dll is loaded

if (m_p3dapi==0){
printf ("Error loading dl1\n");
return -1;

}

//get copy of active config object
config3DApi *cfg =m_p3dapi->getConfig();

//check if config is returned

if(cfg == NULL){
printf ("can't get config\n");
return -2;

}

//(optional) adjust config parameters
//cfg->dStart=-50;
//cfg->dEnd=50;

//after loading dll, initialize the api

if ((m_p3dapi->initialize(cfg))<0){
printf ("can't init system/load config file\n");
return -2;

}

char camFilename[500];
char * testImgDir = "C:\\Users\\Public\\Documents\\Chromasens\\3D\\sample
images\\two camera system\\";

//load test source images

for (int i=0;i<numCams;i++){
sprintf(camFilename, "%s\\%c_%04d.bmp",testImgDir, 'A'+i,0);
inImg[i] = cv::imread(camFilename);

}

//check if images were loaded correct

80 CS-3D-Api

ir"f chromasens

M Imaging for Professionals

!-

if ((inImg[@].rows == @) || (inImg[1].rows == @)){
printf("error loading sample 1mages\n)
return -3;

}

//set image information

widthIn@=inImg[@].cols;

heightIn@=inImg[@].rows;
channelsIn@=inImg[@].channels();
sizeIn@=widthIn@*heightIn@*channelsIn@*sizeof(char);
bpp@=8*channelsInd@;

linePitch@=inImg[0].step;

buffer[0]=inImg[0].data;

if ((m_p3dapi->setSrcImgInfo(@,widthIne,
heightIn@,channelsIn®,bppd,linePitch@,sizeInd))<0){
printf ("image info not acceptable for calculation\n");
return -4;

}

//set pointer to source image of first camera

if (m_p3dapi->setSrcImgPtr(0, (char*)buffer[0])<0){
printf("can’t set src pointer\n");
return -5;

}

As input format, a “raw” format is used. For additional format description, please refer to section 8.1.
Parameters for the second image source can be set in the same fashion.

//now the calculation process is started with

if (m_p3dapi->start()<e){
printf("3D-API has to be initialized first.\n");
return -5;

}

Now you can load the input images in parallel and copy the output images for further processing

11.2 Loading Process
After initialization of the APl we need to provide it with pairs of source images. This is the loading
process. Since version 2.5 of the 3D-API there exist two ways for loading acquired images to the API:
1.) Manual approach with a bit more control over the workflow, see Figure 6.
Note: This approach is only available to Windows platforms.

2.) Convenient approach which is easier to use.

Important: Make sure not to mix the two loading process approaches. The more convenient approach
2.) internally executes all steps done in 1.).

CS-3D-Api 81

chromasens

Imaging for Professionals

11.2.1 Manual Loading Process

[for each image]

[Acquire images by frame grabber J

L —

T

Wait for signal at handle from
getLoadingEventFromSource

J

[for each camera]\

T Set pointer to data of new
acquired image

J

\\-{ Signal API that pointer is valid J

Figure 6: Manual Loading Process

We first get two event handles which will signal when it is ok to change the pointer to a new source
image. After setting the pointer to the new image buffer and/or loading a new image. We signal via the
setSrcimgLoaded(camNr) that it is safe for the API to process the image. With this call the loadEvent
is also reset, so we can use it again to wait for the images being processed.

11.2.1.1 Example

//get handles to check if it is ok to change the source pointer

HANDLE loadEvents[numCams];

for (int c=0;c<numCams;c++){
loadEvents[c]=m_p3dapi->getLoadingEventForSource(c);

}

for (int j=0;j<numImgs;j++){
//wait for API
WaitForMultipleObjects(numCams, loadEvents, true, INFINITE);

for (int c¢=0;c<numCams;c++){
sprintf(camFilename, "%s\\%c_%04d.bmp",testImgDir, 'A'+c,j);
inImg[c] = cv::imread(camFilename);
//check if images were loaded correct

82 CS-3D-Api

‘}3 chromasens

if (inImg[c].rows == 0){
printf("error loading sample images\n");
return -3;

}

buffer[c]=inImg[c].data;

if ((m_p3dapi->setSrcImgPtr(c, (char*)buffer[c]))<0){
printf("can’t set src pointer\n");

return -5;

}

m_p3dapi->setSrcImgLoaded(c);

}

11.2.2 Convenience Loading Process

/[for each image] \

[Acquire images by frame grabber J

L —

p
Set pointers of new acquired
image

J

Figure 7: Convenient Loading Process

_

In this example the images should also be acquired by frame grabber. The acquired images can then
be set to the API using the I3DApi::acquirelmages() function. I3DApi::acquirelmages() will wait
internally until it is allowed to set images to the API.

11.2.2.1 Example

for (int j=0;j<numImgs;j++){

for (int c=0;c<numCams;c++){
// Loading of images either from disk of frame grabber
//..
buffer[c] = [..] // Set the pointers for each acquire image
// Loading of images done

}

uint32_t imgNr = 0;

// Assuming dual camera, so it sets two pointers.

// For compact the second one can be NULL

m_p3dapi->acquireImages(imgNr, buffer[0], buffer[1]);

//.. continue processing

CS-3D-Api 83

Imaging for Professionals

_ﬁ chromasens

11.2.3 Loading Mask Image Data

[for each image]

[Acquire images by frame grabber J

L —

Wait for signal at handle from
getLoadingEventFromSource

|

[for each camera]

Set pointer to data of new
acquired image

J

Set Pointer to data of Image
Mask

J

[for each camera]

-

Signal API that pointer is valid J

Figure 8: Setting Mask in Convenience loading process

Similar to calculating only a required rectangular area of the source image using ROI feature of the
API, calculation can be done only on specific pixel regions of the image of any shape. It can be
achieved by providing information about required regions in a new, single channel grayscale image to
the APIL. This image is termed as Mask image. In the Mask image, pixels of regions in which
calculation is required must be greater than zero. Mask information can be provided to the API using
the function “setimageMask()”. Mask information should be provided to the API, after the API is started
and before the even handles “setSrcimglLoaded” are set, in case of Manual loading process are used.
If convenience loading process are used, Mask data has to be set before the function
“acquirelmages()” is called. The Mask input should be same size as of the source images.

11.2.3.1 Example
for (int j=0;j<numImgs;j++){

buffer = [..] Set the pointers of Mask image

84 CS-3D-Api

;.
\ chromasens

Imaging for Professionals

m_p3dapi->setImageMask(buffer); Provide Mask information to the API

[for each image]

Acquire images by frame grabber

Set pointers of new acquired
image

Figure 9: Setting Mask in Convenience loading process

11.2.3.2 Dilate Mask

It is possible to perform calculation on some additional pixels along the borders of the input mask. In
this case, API increases the size of mask by performing dilate operation on the Mask image. This
feature can be activated by adding the option “dilateWinSize” in C3D-API section of configuration file.
The value of the “dilateWinSize” must be the required additional number of pixels in the border. The
maximum value of “dilateWinSize” is 99.

11.3 Calculation Process

After the initialization is done and loading of the images is completed, we focus on the calculation
process.

To get the dimensions, channel number and output image size in byte, the getDestimglnfo() function
can be used. Then a destination buffer can be allocated to store the calculated image. The
getNextimgBlocking() blocks the execution until the next image has been calculated, or a defined
timeout is reached. If the next image is ready, the actual image number is returned. The
getLastimage() function will provide a pointer to the destination buffer and the desired image type as
soon as the copy process to the user-managed destination buffer is finished. Then the image can be
saved or further processed by the user. If different types of images are needed by the user, they can
be requested then. This must be done before calling the getNextimageBlocking() again or explicitly
freeing the API internal output image via the freeDestimage() function.

11.3.1 Example

//get information about destination images
m_p3dapi->getDestImgInfo(
IMG_OUT_DISP,widthOutDisp,heightOutDisp, channelOutDisp,sizeOutDisp);
m_p3dapi->getDestImgInfo(
IMG_OUT_BGR,widthOutBgr,heightOutBgr,channelOutBgr,sizeOutBgr);

CS-3D-Api 85

ﬁ chromasens

Imaging for Professionals

//allocate memory for height map image
short * dispBuffer=new short[widthOutDisp*heightOutDisp*channelOutDisp];

//allocate memory for bgr image
unsigned char * bgrBuffer=new unsigned char[widthOutBgr*heightOutBgr*channelOutBgr];

//adjust imgDir to a folder where the result images should be written to
char *imgDir= "C:\\Temp";

char *newFileDisp= new char [500];
char *newFileRgb= new char [500];

bool ret=0;
int imgCnt=0;

cv::Mat imgMatDisp(heightOutDisp,widthOutDisp,CV_16U); //needed for 16bit image
cv::Mat imgMatBgr(heightOutBgr,widthOutBgr,CV_8UC3);

for (int i=0@;i<numImgs;i++){
imgCnt=m_p3dapi->getNextImgBlocking(20000);

if (imgCnt <0){
i--;
printf("got timeout, try again ...\n");
continue;

}

if((m_p3dapi->getLastImage(&dispBuffer,IMG_OUT_DISP))<0){
printf("error getting last height map image\n");
return -1;

}

if((m_p3dapi->getLastImage(&bgrBuffer,IMG_OUT_BGR))<0){
printf("error getting last bgr image\n");
return -2;

}
printf("Writing images ...\n");

sprintf(newFileDisp, "%s\\disp_%d.png",imgDir,imgCnt);
sprintf(newFileRgb, "%s\\rgb_%d.bmp",imgDir,imgCnt);

short* dispBufferOri=dispBuffer;

//write height map buffer
for (int row=0;row<heightOutDisp;row++){
for (int col=0;col<widthOutDisp;col++){
imgMatDisp.at<short>(row,col)=*dispBuffer;
dispBuffer++;
}

}
dispBuffer=dispBufferoOri;

//saveDisp
ret |=cv::imwrite(newFileDisp,imgMatDisp);

//saveRGB
imgMatBgr.data=(unsigned char*)bgrBuffer;
ret |=cv::imwrite(newFileRgb,imgMatBgr);

86 CS-3D-Api

chromasens

- @ a Imaging for Professionals
v

if (retl!=1){

printf("can't write image %d\n",i);
}
}
[Calculation]
-

Get e.g buffer size for
desired image

Waits until image is

ready or timeout hit.
Returns error or
imane niimher

I~ Writes desired
image(s) to given
pointer

Figure 10: Calculation Process

11.4 Demo-mode

The demo-mode can be activated via the setDemoMode functions or automatically by setting the
“switchToDemoModeOnAuthError” configuration parameter to “1”. If the parameter is set to “1” the
demo-mode is automatically activated if no dongle is present.

In demo-mode the API behaves like in normal mode, except that no “real” calculation is done. Instead
of using the set input images and calibration information the API loads precalculated data from files
and outputs that to the user. This mode enables the user to explore and even implement the API
without having a dongle.

CS-3D-Api 87

12 Compatible Video Cards

3 chromasens

Imaging for Professionals

In general every CUDA 3.5 capable video card can be used. Some cards we tested for compatibility.

Compatibility tested:

88

o

o

o

NVidia GTX 780 Tl

NVidia GTX 980

NVidia GTX Titan

NVidia GTX 980 TI

NVidia GTX 1060

NVidia GTX 1080

NVidia GeForce GTX 1080 Ti

CS-3D-Api

f chromasens

Imaging for Professionals
-

13 Errorcodes

"ll

13.1 C++
Error Code Description Possible actions
CS3D SUCCESS 0 Everything is alright
CS3D_CUDA_ERROR -107 CUDArelated error Check the log file for more
oceurred. detailed information about
the error.
CS3D INVALID STAT 106 Calculation in has entered The calculation process of
E - an invalid state. a work package in semi
global matching method
has entered an invalid
state. Please investigate
the debug log file for
detailed information about
the error.
CS3D INPUT IMAGE ~105 APlunable to calculate Increase the timeout value
TIMEOUT - the required image results and change the timeout
within the given time value with respect to the
range. size of the sour images.
CS3D_MASK_IP_COR -104 Input mask image datais Mask image is not loaded
RUPT corrupt. right. The mask image data
should be of a single
channel grayscale image.
Please load mask image of
same size as of the source
left image / image A.
CS3D_LICENSE_TOO_ -103 Your Iicensg is not valid
OLD for the version of thg
software you are trying to
start.
CS3D_NO_LICENSES_ -102 Another instance of the
LEFT API is already running.
CS3D_TRIAL_PERIOD -101 Your trial period is over.
_OVER
CS3D_AUTHENTICATI -100 No dongle is present, Double check if you dongle
ON_PROBLEM another instance is is plugged in and the
already running, user has device “CSUSB Ver 2.0 is
no license for called recognized by you PC. You
function, trial period is can check that via the
over. device-manager. For an
extent of the trial period
please contact the support.
CS3D_UNDEFINED -99 Undefined error occurred. Please contact the support
for further instructions.
CS3D_CONFIG_NOT_F -98 Configuration file not The file that is passed to
OUND found. the function is not found.
Double check if the path
and the filename are

CS-3D-Api

89

3 chromasens

Imaging for Professionals

correct.
CS3D_CONFIG_CORR -97 Important parameters in Verify that the current
UPT_OR_CALIBRATIO the configuration file do configuration file is not
N_NOTFOUND not exist or are set to corrupted. If the error
improper values. remains, contact the
support.
CS3D_CALIBRATION_ -96 Calibration file not found. The path to the calibration
FILE_NOT_FOUND file within the configuration
is not correct. Please adjust
it.
CS3D_CALIBRATION_ -95 Important parameters in Verify that the current
FILE_CORRUPT the calibration file don't calibration file is not
exist or are set to corrupted. If the error
improper values. remains, contact the
support.
CS3D_CORE_NOT_INI -94 System is not initialized. Call the initialize/reinitialize
TIALISED Initialize it before starting function before starting the
the calculation. calculation.
CS3D_CONFIG_WRITE -93 Can't write the Check if you have the
_FAILED configuration file, check permission to write to the
permissions. file.
CS3D_CANT_START_ -92 Can't start the calculation Check if every function you
SYSTEM system, initialize it first. call before returns without
error. If not, resolve the
other errors first.
CS3D_SYSTEM_ALRE -91 System is already started. This is not a hard error.
ADY_STARTED You just tried to start the
system twice.
CS3D_SYSTEM_NOT_ -90 Start system before Start the system via the
STARTED calculating. start-function before using it
for calculations.
CS3D_CUDADLL_NOT -89 DIl for chosen window Check if you have read
_FOUND size not found, check access to the directory you
permissions. installed the CS-3D-Api and
if there are some
“cudaRDT*.dIl” dlls. If not
reinstall the CS-3D-Api.
CS3D_WRONG_IMAG -88 The image is not supported

E_SIZE

Set source image
information doesn't match
parameters of
configuration/calibration.

by the Api. Please load the
correct configuration /
calibration shipped with
your Chromasens 3DPIXA.
If you load a demo image
from the CS-3D-Api please
double check if you choose
the correct configuration
from the same directory.

90

CS-3D-Api

u-"f chromasens

Imaging for Professionals

CS3D_CALC_IMAGE_ -87 Verify that the timeout is

Timeout occurred while

TIMEOUT " : long enough so that the
\rr]v:)l(ttlri]g;c;r:alculatlon of GPU has enough time to
calculate the results. Also
verify that the loaded image
can be calculated.
CS3D_NO_OUTPUTIM -86 There is no image Load an image and wait
AGE_READY calculated. some time before the result
is ready.
CS3D_FUNCTION_NA -85 Function is not available, Double check if the function
e.g. deactivated in you use is available and not
configuration. disabled in the
configuration.
CS3D_SYSTEM_SHUT -84 The system has been Don’t shut down the system
DOWN shut down. if you want to use it at a
later time.
CS3D_CAM_NA -83 The chosen camera is not Remember that the first
available camera is camera “0”, the

second is “1” and so on.

Double check if you have
the correct configuration
loaded.

CS3D_GPU_NOT_FOU -82 The chosen GPU is not Check the configuration if
ND available / not CUDA 3.5 the correct GPU is chosen.
capable. The first GPU in your

system is GPU “0”, the
second is “1” and so on.
Performing the calculation
via Remote Desktop
Connection is also not
possible for some GPUs.

CS3D_N0_|MAGE_|NF -81 No information about the You have to set the image
O_SET input image set. information before starting
the calculation.

CS3D_GPU_MEMALL -80 Error of GPU memory Check if the GPU has
OC_ERROR allocation, perhaps not enough physical memory.
enough GPU memory.
CS3D_MEMALLOC_ER -79 Error of GPU or CPU Check if there is enough
ROR memory allocation. physical GPU and PC RAM
available.
CS3D_MEMALLOC_U -78 Other error of memory Check if enough physical
NDEFINED allocation. RAM is available.
CS3D_CUDA_DEVICE_ -77 No CUDA capable device Check if you have a CUDA
NOT_FOUND found. 3.5 capable device
installed.
CS3D_CUDA_DEVICE_ -76 CUDA compute capability Check if the GPU you have
COMPCAP_TOOLOW of device is too low. chosen in the configuration

is CUDA 3.5 capable.

CS-3D-Api

3 chromasens

Imaging for Professionals

CS3D_CUDA_DEVICE_ -75 Not enough GPU Check if the GPU has
NOT_ENOUGH_MEM memory. enough physical memory.
CS3D_DEMO_ERROR -74 Error occurred while in Check if you have at least
demo mode (e.g. file not read permission to the
found). folder where you installed
the Api. Reinstall the CS-
3D-Api to be sure
everything is installed
correctly.
CS3D_INVALID_CALIB -73 The calibration Verify that the right
RATION information is configuration / calibration
inconsistent. for the images is loaded.
CS3D_NO_IMAGE_SE -72 The source image pointer The source pointer has to
T is NULL or not set. be set before calling the
“setSrcimglLoaded”
function.
CS3D_INVALID_ROI -71 The ROI is not within the Double check the set ROI.
image borders. It has a
size of zero or a negative
size
CS3D_CALC_|MAGE_ -70 If “cancel” is called while This error appears if you
CANCELED waiting for an image the cancel the waiting for an
“getNextImgBlocking” image.
returns that error.
CS3D_CUDA_DRIVER -69 The installed GPU drivers Please update the drivers
_OUTDATED are too old. of you NVidia-GPU.
CS3D_INVALID_IMAG -68 Tried to access an image |t seems that this image is
ENUMBER that is not in a buffer. not calculated or a|ready
freed.
CS3D_|MAGE_|N_USE -67 The calculation on that On|y access images if they
image is still running. are already calculated.
CS3D_UNSUPPORTED -66 Given image type/source Please check this manual
_IMAGE_FORMAT image info doesn’t match. for supported image
formats.
CS3D_INVALID_PARA -65 One or more parameter Please check the
METER settings are improper. documentation of the
function and use it
correctly.
CS3D_CAM_CONNEC -64 Cannot connect to Please check if the camera
TION_ERROR camera is properly connected, and
if connection type and port
are set correctly, or try to
update camera firmware.
CS3D_CAM_RW_ERR -63 Reading/writing data Please check if the camera
OR from/to camera error is proper|y connected, and
make sure the data to be
uploaded does not exceed
the camera memory.
CS3D_IMAGE_LOADIN -62 Cannot load the image(s)

G_ERROR

Please check if the image
file path is correct.

92

CS-3D-Api

ir"f chromasens

Imaging for Professionals

CS3D_CALIB_VERIFIC -61
ATION_FAILED

Calibration verification
failed or has low
confidence

Please check the image
quality (the image should
be sharp and rich in texture
along whole image width),
or if the image is scanned
in wrong direction, or try to
adjust the height range.

CS3D_CALIB_TARGET -60
_NOT_FOUND

Calibration target is not or
only partially detected in
the given image(s).

Check if the target is visible
in (both) image(s) and if the
illumination is neither to
bright nor to dark.

59

CS3D_TARGET_DEFIN
ITION_ERROR

Calibration definition not
valid / not found.

Check if right target
definition is set.

CS3D_CALIBRATION_ -58
TOO_OLD

Calibration version is too
old for the current
software.

Use a newer calibration
version or downgrade to an
older CS-3D software
version .

CS3D_CAM_RW_PER -57
MISSION_ERROR _

Unable to write/read data
to/from the camera.

This error occurs because
of the lack of permission to
read and write data into
camera or because if the
data is already present in
the camera. Please refer
log file for more details.

CS3D_INTERFACE_VE -56
RSION_MISMATCH

The version of the
interface
(CS3D_MAJOR/MINOR _
VERSION) does not
match what the
application requested
during creation

Use the header files of
correct version provided
with the DLL.

CS3D_SYNC DIFF_ER -55
R_UNRECTIFIABLE

Unable to rectify the
synchronization difference
between cameras through
calculation in API. The
synchronisation difference
error value is either
greater than maximum
allowable synchronisation
difference error value or
the difference is not
consistent when checked
in multiple lines of source
images.

Create new images as
these images are corrupt.

CS3D_CALIBRATION_ -54
MISMATCH

The calibration file and
the input image are not
related to each other.

Please use the right
calibration file and input
image(s).

CS3D_UNRELATED_IN -53
PUT_IMAGES

The left and right images
(from master and slave
cameras of dual camera
setup) are not related to
each other.

Please use the right pair of
images obtained from a
dual camera setup.

CS3D_NO_FIRST_LIN -52
E_INFOBLOCK

The camera first line info-
block, which is required is
not available in the image

Please provide input
images with first line info
block.

CS-3D-Api

93

‘Yﬁ chromasens

l."

Imaging for Professionals

CS3D_NO_EACH_LINE -51 The camera each line Please provide input
_|NFO_BLOCK info-block which is images with each line info
required is not available in p|ock.
the image
CS3D_MASK_NOT_IM -50 Currently the image mask Please use Block matching
PLEMENTED_FOR_M functionality is not yet method, in case the
ODE available for the Semi required output data has to
Global Matching method be calculated on|y for
masked area.
CS3D_|NFOBLOCK_D| -49 Camera info blocks in A Please provide input image
FFERENT_POS'T'ON and B image are in pair that have info-blocks
different positions. They present in similar location in
both should be either in image.
first pixels or last pixels.
CS3D_|NVAL|D_VERT| -48 One of the source images Please create new input
CAL_M'RROR are mirrored in vertical images as these images
direction or the variation are Corrupt or missing
of line count values in some image lines.
image is not stable.
CS3D_MISSING_IMG_ 47 Source image is missing Please create new input
LINES some lines in-between images as given input
(missing line-count images are missing image
values). lines.
Warning Code Description Possible actions
CS3D_WARN_INVALID -10001 A parameterwas Please check which
PARAMETER ADJUS _automatlcal_ly adjusted to parameter was out of
TED - its boundaries. bounds and correct it
CS3D WARN CALIB -10002 Ca!ibration file may notbe Please do further test to
NOT VALID ANYMOR valid anymore for the verify the result, or contact
E - current camera status. support.
CS3D WARN ROl AD -10003 ROI _is defined ir_‘ a region No action required. If ROI
JUSTED that is not contained in should match the disparity
both images of the stereo image, adjust ROI to
pair (overlapping area). overlapping area
Only regions contained in
both images are effecting
the calculation
CS3D_WARN_P3D_NO -10004 ©One ormore pointcloud One or more input raw
T VALID - - calculations return invalid coordinates may be invalid.
B result. Please verify the raw
coordinates input, or ignore
the invalid values.
CS3D WARN RESULT -10005 One or more results are Check if the input values

_OUT_OF_RANGE

out of specified height
range of this sensor

are right. Results can be
inexact.

13.2

Code

LabVIEW

Possible action

CS3D_LV_UNDEFINE -199

Description

Undefined error in

Please feel free to contact

94

CS-3D-Api

u-"f chromasens

Imaging for Professionals

wrapper dll

our support.

CS3D_LV_CANT_LOA -198
D_DLL

Can't load CS-3D-API
core

(Re-)Install current CS-3D-
Software package.

CS3D_LV_CANT_GET -197
_CONFIG

Can't get a config object
from CS-3D-API

Verify that config is loaded
correctly.

CS3D_LV_CANT_GET -196
_ACTIVE_CONFIG

Can't get an active config
object from CS-3D-API

Verify that config is loaded
correctly.

CS3D_LV_INVALID_ C -195
AMERA_NUMBER

Invalid camera number

Choose a camera number
according to your
configuration.

CS3D_LV_INVALID_C -194
HANNEL_ORDER

Invalid channel Order

Choose one of the channel
orders available.

CS3D_LV_NO_SRCIM -193
GINFO

“srclmglinfo” hasn't been
set yet

Use the Vis in the correct
order

CS3D_LV_INVALID O -192
UTPUT_FORMAT

Invalid output format

Choose an available output
format.

CS3D_LV_LOAD_IMG -191
_TIMEOUT

Timeout occurred while
waiting for to be able to
load next images

Increase timeout / limit the
height of your images.

CS3D_LV_INVALID_O -190
UTPUT_ARRAY

Invalid output buffer array

Check if you have enough
available RAM

CS3D_LV_ALLOC_ER -189
ROR

An error occurred while
trying to allocate memory

Check if you have enough
available RAM

CS3D_LV_NOT_CONF -188
IG_WIDTH

Image width differs from
the one in the config

Choose right camera config

CS3D_LV_INVALID_R -187
EFERENCE

Invalid reference/pointer
to CS-3D-API

Verify that Api-Core is
initialized correct.

CS3D_LV_INVALID_C -186
ONF_FILE

Invalid configuration file
name in initialization

Doublecheck config
filename

CS3D_LV_INVALID_C -185
HANNEL_COUNT

Invalid channel count

Choose correct channel
count (1 or 3)

CS3D_LV_INVALID_IM -184
AGE_HEIGHT

Invalid image height

Choose correct image
height

CS-3D-Api

95

3 chromasens

a Imaging for Professionals

CS3D_LV_INVALID_A -183 CS-3D-API core not found (Re-)Install current CS-3D-
Pl_FILE_PATH Software package.

13.3 HALCON

Code Description Possible action
Error loading dll 10999 CS-3D core is not found. (Re-)Install current CS-3D-
Software package.
Can’t get config 10998 Config not found Double check the config
filename

96 CS-3D-Api

" Imaging for Professionals

chromasens

14 Frequently Asked Questions

14.1 What does Calculation Speed Depend on

e Calculation Parameters
o Height range
o Results calculated, rectified image, height image, point cloud
o ROI
o Whether allow some degree of height resolution reduction
e Hardware
o GPU
* Number of CUDA cores

= Clock frequency

= Number of cores
= Frequency
o RAM access speed
o Bus bandwidth
e Implementation

o If possible, use at least two threads, one for the image acquisition / loading the images to
the API and a second one to get the results from the API, and make sure to fully load the
calculation pipeline to maximize the calculation throughput.

o Have a look at our example CS3DApiPerformance that will also give you a hint on how
fast you can get.

o If you measure the speed, always take the average of a whole sequence of calculated
images to have a realistic value.

14.2 How to Increase the Calculation Speed

e Select the smallest possible height range

e Switch off the calculation of the results that are not needed e.g. “doCalc3DPoints=0" if the point
cloud is not used

e Use the ROI function or directly reduce the image height to the avoid calculation of areas that do
not contain any information.

e Allow some degree of height resolution reduction by setting parameter heightResolutionReduction
in config file (section [DISPARITY]) to 1. This can be an efficient option to increase the calculation
speed when the reduced height resolution still fulfills the requirement of your application.

14.3 How to Use Multiple GPUs

Adjust the number of GPUs at configuration and select which GPUs to use.

1) Set “numGPUs” to the number of GPUs you want to use
e.g “numGPUs=2" if you want to use two GPUs

2) Set which GPU use as the first, second, ... here the enumeration starts with “0”

CS-3D-Api 97

l T

u-"i chromasens

.
a Imaging for Professionals
.
n
w

e.g. “useGPUs[0]=0" and “useGPUs[1]=1" if you want to use the first two GPUs in same instance.
e.g. “useGPUs[0]=1" and “useGPUs[2]=3" if you want to use the second and the fourth GPU in
same instance.

14.4 How to Generate a Debug Log

Method 1:

1) Set “debug=9” in configuration you use

2) Install “DebugView” from http://technet.microsoft.com/enus/sysinternals/bb896647.aspx
3) Start DebugView

4) Execute CS-3D-Api/ Viewer

Method 2:

1) Set “debug=9” in configuration you use
2) Set “logFile=your_path_to _log file” in configuration you use. For example: logfile=C:\temp\log.txt
3) Execute CS-3D-Api/ Viewer

14.5 Support Information

In case you want to ask our support for help regarding a specific software issue or if you like to report
an error, please provide us with the following information:

Serial number and camera type / CP-number

Image height and width of the source images

Configuration and calibration file

CS-3D software version

Debug log output like described in chapter 14.4

Does the program work with the sample images?

Hardware-Info: GPU type / driver version / mainboard type / RAM size
Detailed error description, screenshots

Source camera images, if possible

98 CS-3D-Api

u-"f chromasens

Imaging for Professionals

15 Additional remarks

The Chromasens 3D-Api and the Chromasens 3D-Viewer use the OpenCYV library http://opencv.org for
image processing.

The license of the OpenCYV library is included in the “{appDir}/Chromasens/3D/docs” folder.

CS-3D-Api 99

http://opencv.org/

3 chromasens

Imaging for Professionals

Chromasens GmbH
Max-Stromeyer-Strasse 116
78467 Konstanz

Germany

100

Phone: +49 7531 876-0

Fax:

+49 7531 876-303

www.chromasens.de

support@chromasens.de

Copyright by Chromasens GmbH

CS-3D-Api

