” Allied Vision

a TKH Vision brand

eGrabber

Programming eGrabber

Document D234EN-AV eGrabber Programmer Guide-eGrabber-25.12.1.2209 built on 2026-01-19
© Allied Vision 2026

eGrabber Programming eGrabber

Contact Us

Website, email

.....

General

www.alliedvision.com/en/contact
info@alliedvision.com

Support

www.alliedvision.com/en/support

Distribution partners

www.alliedvision.com/en/avt-locations/avt-distributors

www.alliedvision.com/en/about-us/contact-us/technical-support-repair-/-rma

Offices

Europe, Middle East, and Africa
(Headquarters)

Allied Vision Technologies GmbH
Taschenweg 2a

07646 Stadtroda, Germany

T// +49 36428 677-0 (Reception)
T// +49 36428 677-230 (Sales)

F// +49 36428 677-28

Asia-Pacific | China

Allied Vision Technologies Shanghai Co Ltd.

B-510, Venture International Business Park
2679 Hechuan Road

Minhang District, Shanghai 201103
People's Republic of China

T// +86 21 64861133

Singapore

Allied Vision Technologies Asia Pte. Ltd
82 Playfair Rd, #07-01 D'Lithium
Singapore 368001

T// +65 6634 9027

North, Central, and South America,
Canada

Allied Vision Technologies Canada Inc.
300 - 4621 Canada Way

Burnaby, BC V5G 4X8, Canada

T// +1 604 875 8855

USA

Allied Vision Technologies, Inc.
102 Pickering Way - Suite 502
Exton, PA 19341, USA
Toll-free// +1-877-USA-1394
T// +1978 2252030

Japan

Allied Vision Technologies
Yokohama Portside Bldg. 10F

8-1 Sakae-cho, Kanagawa-ku
Yokohama-shi, Kanagawa, 221-0052
T// +81 (0) 45 577 9527

This documentation is provided with eGrabber 25.12.1 (doc build 2209).

https://www.alliedvision.com

This documentation is subject to the General Terms and Conditions stated on the website of Allied Vision
and available on https://www.alliedvision.com/en/information/terms-conditions/.

http://www.alliedvision.com/en/contact
mailto:info@alliedvision.com
http://www.alliedvision.com/en/avt-locations/avt-distributors
http://www.alliedvision.com/en/support
http://www.alliedvision.com/en/about-us/contact-us/technical-support-repair-/-rma
https://www.alliedvision.com/
https://www.alliedvision.com/en/information/terms-conditions/

eGrabber Programming eGrabber AY niied vision

Contents

LoIntrodUuCtion ... 4
2 GO A 6
3L GO T L 8
A EGeNT L 10
5. eGrabber 12
6. EUresys GenADI SCIiPES 29
7. Euresys GenApi EXXENSIONS ... 41

Bootstrap register Nelpers 47

FileAccessControl helpers 48
8. eGrabber for MultiCam users ... 50
9. NET assembly ... 56
10, PY N ON . 60
11, Sample Programs 62
12. GenTL producers configuration 68
13, DefinitioNS . 72

eGrabber Programming eGrabber AY niied vision

1. Introduction

The Application Programming Interface (API) for Coaxlink cards, Grablink Duo, and Gigelink is "
eGrabber" on page 12, which is based on GenlCam.

eGrabber Studio

eGrabber-based
user applications

lA eGrabber

" Powerful Image Acquisition eGrabber

eGrabber
!

Open eVision interface

\ Euresys::EGenTL /

Euresys GenTL producers

Coaxlink Grablink? Gigelink Playlink
I - Only compatiblewith Grablink Duo

GenTL-based
%‘?g L%aen;' gentl.exe user application

The goal of GenlCam is to provide a standardized, uniform programming interface for using
cameras and frame grabbers based on different physical interfaces (CoaXPress, GigE Vision, etc.)
or from different vendors.

GenlCam is a set of EMVA standards (GenApi and GenTL), as well as related conventions for
naming things (the SFNC for standard features, the PFNC for pixel formats).

e GenApi is about description. At the core of GenApi is the concept of register description.
Register descriptions are provided in the form of XML files. They map low-level hardware
registers to high-level features.GenApi allows applications to detect, configure and use the
features of cameras and frame grabbers in a uniform and consistent way.

e GenTL is about data transport. The TL suffix stands for Transport Layer.The GenTL standard
defines a set of C functions and data types for enumerating, configuring, and grabbing
images from cameras and frame grabbers. This API is defined by a C header file.Frame
grabber vendors provide libraries that implement this API (i.e., libraries that export the
functions declared in the standard header file). These libraries are referred to as GenTL
producers, or Common Transport Interfaces (CTI) and use the cti file extension. Euresys
provides four GenTL producers: coaxlink.cti for Coaxlink cards, grablink.cti for the Grablink
Duo, gigelink.cti for GigE Vision cameras, and playlink.cti for eGrabber Recorder containers.

http://www.emva.org/standards-technology/genicam/introduction-new/
http://www.emva.org/
http://www.emva.org/wp-content/uploads/GenICam_Standard_v2_0.pdf
http://www.emva.org/wp-content/uploads/GenICam_GenTL_1_5.pdf
http://www.emva.org/wp-content/uploads/GenICam_SFNC_2_2.pdf
http://www.emva.org/wp-content/uploads/GenICam_PFNC_2_0.pdf
http://www.emva.org/wp-content/uploads/GenICam_GenTL_1_5.pdf
http://www.emva.org/wp-content/uploads/GenTL_v1_5.h

eGrabber Programming eGrabber

”Allied Vision

This document is meant to be read from beginning to end. Each chapter and section builds
upon the preceding ones. If you skip parts of the text, some of the explanations and examples

may seem cryptic. If that happens, you should go back and read the parts that you’ve skipped
over.

eGrabber Programming eGrabber AY niied vision

GenApi addresses the problem of configuring cameras. The way this is achieved is generic, and
applies to different kinds of devices, including frame grabbers. In this chapter, everything we
say about cameras also applies to frame grabbers.

GenApi requires two things to work: a register description, and a GenApi implementation.

Register description

A register description is an XML file that can be thought of as a computer-readable datasheet of
the camera. It defines camera settings (such as PixelFormat and TriggerSource), and instructions
on how to configure them (e.g., to set ExposureMode to Timed, write value 0x12 to register
0xE0140). It can also contain camera documentation.

GenApi implementation

A GenApi implementation is a software module that can read and interpret register description
files.

The EMVA provides a reference implementation, but it is fairly difficult to use, and logging is
very poor. Instead, we recommend using the Euresys implementation bundled with the
eGrabber software package. This implementation also allows writing powerful " Euresys GenApi
scripts" on page 29 and provides " Euresys GenApi Extensions" on page 41 accessible as virtual
GenApi features that we call @-commands.

Features

What the user gets from GenApi is a bunch of named features, organized in categories.

Set/get features

Set/get features are simple settings (called parametersin " eGrabber for MultiCam users" on
page 50), and can be of different types:

integer (e.g., Width)

e float (e.g., AcquisitionFrameRate)
e enumeration (e.g., PixelFormat)
e boolean (e.g., LUTEnable)

e string (e.g., DeviceVendorName)

The value of features can be retrieved/modified using get/set functions. Some features are read-
only and some are write-only, but most allow read/write access.

http://www.emva.org/wp-content/uploads/GenICam_Standard_v2_0.pdf
http://www.emva.org/
http://www.emva.org/wp-content/uploads/GenICam_v2_4_1__public_data.zip

eGrabber Programming eGrabber KY iieg vision

.........

Commands

There is also another kind of features: commands (e.g., AcquisitionStart). Commands are special:
they don’t have any associated value; they have side effects. Command features are meant to
be executed. When a command is executed, some action happens in the camera (e.g., a

software trigger is generated). Obviously, get/set functions don’t make sense for commands and
can’t be used.

eGrabber Programming eGrabber AY niied vision

3. GenTL

GenTL defines 5 types of objects, organized in a parent/child relationship:
1. the system module

2. the interface module

3. the device module

4. the data stream module

5. the buffer module

Each module:

e corresponds to a particular element of the system;

e defines relevant pieces of information (info commands) that can be queried (using get info
functions);

e allows exercizing that module’s functionality (using specific functions).

Additionally, all modules except the buffer module behave as ports that allow read/write
operations. These port functions are used by " GenApi" on page 6 to load that module’s
description file, and to use its GenApi features.

System module

The system module (also referred to as TLSystem), represents the GenTL producer (e.g., the
coaxlink.cti library). This module is at the top of the parent/child tree.

The system module provides basic information about the GenTL producer: things like the
complete path to the CTI file and the vendor name (Euresys).

The real point of the system module is to list the " Interface module" on page 8 (or frame
grabbers) present in the system. The most important functions of the system module are
TLGetNumlnterfaces (to retrieve the number of frame grabbers in the system) and
TLOpenlnterface (to get access to one of the frame grabbers).

Interface module

The GenTL standard calls frame grabbers interfaces. The system module has one child interface
for each frame grabber: if there are 2 Coaxlink cards in the computer, the system module will
have two child interfaces.

Each interface represents a frame grabber. Global frame grabber features such as digital I/0
lines belong in the interface module. This means that the " GenApi" on page 6 features
controlling the I/O lines are attached to the interface.

Each interface also acts as parent to one or several " Device module" on page 9. The most
important functions of the interface module are IFGetNumDevices (to retrieve the number of
cameras that can be connected to the interface) and IFOpenDevice (to get access to one of the
devices).

eGrabber Programming eGrabber AY niieg vision

Device module

The GenTL standard uses the terms device and remote device for two related but different
concepts. A remote device is a real camera, physically connected to a frame grabber. This is
different from the device module we describe here.

The device module is the module that contains the frame grabber settings relating to the
camera. This includes things like triggers and strobes.

The device module also acts as parent to one or several " Data stream module" on page 9, and
can be viewed as the sibling of the remote device. The most important functions of the device
module are DevOpenDataStream (to get access to one of the data streams) and DevGetPort (to
get access to the remote device).

Data stream module

The data stream module handles " Buffer module" on page 9. During acquisition runs, images
are sent from the camera to the frame grabber, which transfers them to memory buffers
allocated on the host computer. The data stream module is where image acquisition occurs. It is
where most of the functionality resides.

Buffer handling is very flexible. Any number of buffers can be used. Buffers are either in the
input queue, in the output queue, or temporarily unqueued. The application decides when
empty buffers are queued (to the input FIFO), and when filled buffers are popped (from the
output FIFO).

Buffer module

The buffer module simply represents a memory buffer given to a parent data stream. Useful
metadata is associated to buffers. This includes the image width, height, pixel format,
timestamp--- These are retrieved through info commands (see BUFFER_INFO_CMD_LIST in the
standard GenTL header file).

The buffer module is the only module that doesn’t have read/write port functions; it doesn’t
have GenApi features.

GenTL API

GenTL makes it possible to detect, control and use all camera and frame grabber features, but
its usage is tedious:

e cti files must be dynamically loaded, and the functions they export must be accessed
through pointers.

e Functions return an error code that must be checked by the application.

e Most functions read from/write to untyped buffers: the application must determine the
required buffer size, allocate a temporary buffer, convert data to/from this buffer, and finally
release the buffer memory.

Instead of using the GenTL API directly, we recommend using either:
e the EGenTL C++ class which deals with these complications so that the user doesn’t have to;

e or the eGrabber library which provides a high-level, easy-to-use interface.

http://www.emva.org/wp-content/uploads/GenTL_v1_5.h

eGrabber Programming eGrabber AY niied vision

4. EGenTL

Euresys::EGenTL is a C++ class that provides the same functionality as standard GenlCam
GenTL, but with a more user-friendly interface. For example, it uses std::string instead of raw
char pointers, and error codes are transformed into exceptions. Euresys::EGenTL also takes care
of locating the GenTL producer and loading the functions it exports.

To use Euresys::EGenTL, simply include the relevant header file':

#include <EGenTL.h>

Instead of the raw, low-level C functions that GenTL defines, we get a Euresys::EGenTL object
that represents the GenTL producer:

e Each GenTL function is available as a member method of Euresys::EGenTL. GenTL function
names start with an upper-case prefix. In Euresys::EGenTL, method names start with the
same prefix, but written in lower-case. For example, the GCReadPort function is exposed as
the gcReadPort method, and the TLOpeninterface function as the tiOpenlinterface method.

e All GenTL functions return a GC_ERROR code indicating success or failure. When a function
returns a code other than GC_ERR_SUCCESS, an exception is thrown. This removes the
burden of manually checking error codes after each function call.

e Since GenTL functions return a GC_ERROR, output values are returned through pointers
passed as arguments. Euresys::EGenTL methods offer a more natural interface; they return
the output value directly:GC_API TLGetNumInterfaces(TL_HANDLE hTL, uint32_t
*piNumlfaces);uint32_t tiGetNuminterfaces(TL_HANDLE tlh);(Note that GC_API is defined as
GC_IMPORT_EXPORT GC_ERROR GC_CALLTYPE. It is simply a GC_ERROR decorated with
calling convention and DLL import/export attributes.)

e For GenTL functions that deal with text, the corresponding Euresys::EGenTL methods
convert from char * to std::string and vice-versa:GC_API TLGetInterfacelD(TL_HANDLE hTL,
uint32_t ilndex, char *sID, size_t *piSize);std::string tlGetInterfacelD(TL_HANDLE tlh, uint32_t
index);

e Some GenTL functions retrieve information about the camera or frame grabber. These
functions fill a void * buffer with a value, and indicate in an INFO_DATATYPE the actual type
of the value. Euresys::EGenTL uses C++ templates to make these functions easy to use:GC_
AP| GCGetInfo(TL_INFO_CMD ilnfoCmd, INFO_DATATYPE *piType, void *pBuffer, size_t
*piSize);template<typename T> T gcGetInfo(TL_INFO_CMD cmd);

A first example

This program uses Euresys::EGenTL to iterate over the Coaxlink cards present in the system,
and display their id:

#include <iostream>
#include <EGenTL.h> /11

1 0On Windows, the application must be linked with Kernel32.lib.

On Linux, the application must be linked with -Idl and -Ipthread or preferably compiled and linked with -pthread.

class_euresys_1_1_e_gen_t_l.html
class_euresys_1_1_e_gen_t_l.html

eGrabber Programming eGrabber

AY niied vision

void listCards() {

Euresys::EGenTL gentl; 112
GenTL::TL_HANDLE tl = gentl.tlOpen(); 113
uint32_t numCards = gentl.tiGetNuminterfaces(tl); 114

for (uint32_t n = 0; n < numCards; ++n) {
std::string id = gentl.tIGetInterfacelD(tl, n); 115
std::cout <<"[" << n <<"]" <<id << std::endl;
}
}

int main() {
try { /16
listCards();
} catch (const std::exception &e) { 116

std::cout << "error: " << e.what() << std::endl;

}

1. Include EGenTL.h, which contains the definition of the Euresys::EGenTL class.

2. Create a Euresys::EGenTL object. This involves the following operations:
o locate and dynamically load the Coaxlink GenTL producer (coaxlink.cti);

o retrieve pointers to the functions exported by coaxlink.cti, and make them available

via Euresys::EGenTL methods;

o initialize coaxlink.cti (this is done by calling the GenTL initialization function

GClInitLib).

3. Open the GenTL producer. This returns a handle of type GenTL::TL_HANDLE. The GenTL
namespace is defined in the standard GenTL header file, which has been automatically

included by EGenTL.h in step 1.

4. Find out how many cards are present in the system.

5. Retrieve the id of the n-th card.

6. Euresys::EGenTL uses exceptions to report errors, so we wrap our code inside a try ... catch

block.

Example of program output:

[1]1 PC1632 - Coaxlink Quad (1-camera) - KQUO0031

[0] PC1633 - Coaxlink Quad G3 (1-camera, line-scan) - KQG00014

Relevant files

Main header. Includes all the other headers.

include/EGenTL.h

Defines Euresys::EGenTL.

include/GenTL_v1_5.h

Standard GenTL header. Defines standard types,
functions and constants.

include/GenTL_EuresysCustom.h Defines eGrabber-specific constants.

http://www.emva.org/wp-content/uploads/GenTL_v1_5.h
../../../IOdoc/egrabber-reference/_e_gen_t_l_8h.html
../../../IOdoc/egrabber-reference/_gen_t_l__v1__5_8h.html
../../../IOdoc/egrabber-reference/_gen_t_l___euresys_custom_8h.html

eGrabber Programming eGrabber AY niied vision

5. eGrabber

eGrabber is a library of C++ classes that provide a high-level interface. It is built on top of
"EGenTL" on page 10, and is recommended for most users.

A .NET assembly, built on top of eGrabber, is also provided. In this document, we focus mainly
on the C++ API. Minor differences between the C++ and .NET interfaces are listed in " .NET
assembly" on page 56.

Python bindings are also available for eGrabber. Again, the differences between the C++ and
Python interfaces are listed in " Python" on page 60.

To use the classes described here, you need to include the main eGrabber file:

#include <EGrabber.h>

eGrabber’ comprises several classes, the most important of which is Euresys::EGrabber:

namespace Euresys {
class EGrabber;

}

In this text, we’ll refer to this class as a grabber. A grabber encapsulates a set of related GenTL
modules:

e An interface: the module that represents global (shared) frame grabber settings and features.
This includes digital 1/0 control, PCle and firmware status--

e Adevice (or local device, as opposed to remote device): the module that contains the frame
grabber settings and features relating to the camera. This consists mainly of camera and
illumination control features: strobes, triggers---

e A data stream: the module that handles image buffers.
e A remote device: the CoaXPress camera.
e A number of buffers.

Go back to " GenTL" on page 8 if these concepts are not clear.

A first example

This example creates a grabber and displays basic information about the interface, device, and
remote device modules it contains:

#include <iostream>
#include <EGrabber.h> /11

static const uint32_t CARD_IX=0;
static const uint32_t DEVICE_IX = 0;

void showInfo() {

1 0On Windows, the application must be linked with Kernel32.lib.

On Linux, the application must be linked with -Idl and -Ipthread or preferably compiled and linked with -pthread.

class_euresys_1_1_e_grabber.html

eGrabber Programming eGrabber AY niied vision

Euresys::EGenTL gentl; /12
Euresys::EGrabber<> grabber(gentl, CARD_IX, DEVICE_IX); 13

std::string card = grabber.getString<Euresys::InterfaceModule>("InterfacelD"); // 4

std::string dev = grabber.getString<Euresys::DeviceModule>("DevicelD"); 115
int64_t width = grabber.getinteger<Euresys::RemoteModule>("Width"); 116
int64_t height = grabber.getinteger<Euresys::RemoteModule>("Height"); /116

std::cout << "Interface: " <<card << std::endl;
std::cout << "Device: "<< dev <<std::endl;
std::cout << "Resolution: " << width <<"x" << height << std::endl;

}

int main() {
try { 17
showlnfo();
} catch (const std::exception &e) { 17
std::cout << "error: " << e.what() << std::endl;

}

}

1. Include EGrabber.h, which defines the Euresys::EGrabber class, and includes the other header
files we need (such as EGenTL.h and the standard GenTL header file).

2. Create a Euresys::EGenTL object. This involves the following operations:
o locate and dynamically load the Coaxlink GenTL producer (coaxlink.cti);

o retrieve pointers to the functions exported by coaxlink.cti, and make them available
via Euresys::EGenTL methods;

o initialize coaxlink.cti (this is done by calling the GenTL initialization function
GClnitLib).

3. Create a Euresys::EGrabber object. The constructor needs the gentl object created in step 2. It
also takes as optional arguments the indices of the interface and device to use.The purpose
of the angle brackets (<>) that come after EGrabber will become clear later. For now, they
can be safely ignored.

4. Use " GenApi" on page 6 to find out the ID of the Coaxlink card. Euresys::InterfaceModule
indicates that we want an answer from the " Interface module" on page 8.

5. Similarly, find out the ID of the device. This time, we use Euresys::DeviceModule to target the
" Device module" on page 9.

6. Finally, read the camera resolution. Euresys::RemoteModule indicates that the value must be
retrieved from the camera.

7. eGrabber uses exceptions to report errors, so we wrap our code inside a try ... catch block.

Example of program output:

Interface: PC1633 - Coaxlink Quad G3 (2-camera) - KQG00014
Device: Device0
Resolution: 4096x4096

http://www.emva.org/wp-content/uploads/GenTL_v1_5.h

eGrabber Programming eGrabber AY niieg vision

Discovering grabbers and cameras

Using indices

In the previous example, we created a grabber object using the indices of the interface (CARD_
IX) and device (DEVICE_IX) to use:

Euresys::EGrabber<> grabber(gentl, CARD_IX, DEVICE_IX);

Those indices are optional and are set to 0 by default. We have already seen earlier that GenTL
modules are organized as a tree structure where the root is the system module (please refer to '
GenTL" on page 8 for details). In short, the system module maintains a list of interfaces present
in the system, each interface maintains a list of devices associated to that interface, and each
device maintains a list of available data streams. So using 3 indices, we can identify a specific
data stream within the GenTL module hierarchy. Each index represents the position of an
element in 3 successive lists (interface, device and stream lists).

The GenTL standard defines two functions to update those lists:
e TLUpdatelnterfaceList: to update the list of available interfaces in the system;
e |FUpdateDevicelist: to update the list of available devices connected to a specific interface.

Please note that the GenTL standard mandates that those lists cannot change between calls to
their corresponding update functions. In other words, when TLUpdatelnterfaceList is called, a
“snapshot” of the present interfaces is taken and maintained in the GenTL library until the next
call. The same applies to IFUpdateDeviceList for the available devices of a specific interface.

To simplify the creation of a grabber object, the EGrabber constructor calls the “update list”
functions automatically so that the indices given as arguments refer to the current state of the
system.

Those constructors are fine and easy to use when the system hierarchy is fixed, i.e. when it does
not change dynamically.

Coaxlink and Grablink cards are fixed interfaces in the system and those interfaces have a fixed
number of devices that depends on the selected firmware. Calling several times the “update
list” functions from the same process on such fixed systems will lead to the same results;
therefore an application can safely use the indices to identify specific modules and create
grabbers.

However, this simple approach may lead to troubles on systems that change dynamically. The
Gigelink producer is a system that uses network interfaces to find and establish connections to
GigE Vision cameras. Obviously, calling IFUpdateDeviceList on such systems will lead to
completely different results depending on what’s available on the network when the function is
invoked. In such environments, referring to a specific data stream using indices might not be
applicable.

To solve this issue, and to provide a simple way to discover possible grabber objects and
connected cameras in the system, we provide the Euresys::EGrabberDiscovery module.

Using EGrabberDiscovery

The Euresys::EGrabberDiscovery module provides a function discover that scans the system to
detect available grabbers and cameras. Here is an example:

../../../IOdoc/egrabber-reference/class_euresys_1_1_e_grabber_discovery.html
../../../IOdoc/egrabber-reference/class_euresys_1_1_e_grabber_discovery.html

eGrabber Programming eGrabber KY iieg vision

.........

}

}

#include <EGrabber.h>
#include <iostream>

static void discover() {

Euresys::EGenTL gentl;
Euresys::EGrabberDiscovery discovery(gentl); 11

discovery.discover(); 112

for (inti = 0; i < discovery.egrabberCount(); ++i){ //3
Euresys::EGrabber<> grabber(discovery.egrabbers(i)); //4
...

}

for (inti = 0; i < discovery.cameraCount(); ++i) { 115
Euresys::EGrabber<> grabber(discovery.cameras(i)); //6
...

}

int main() {

try {
discover();

} catch (const std::exception &e) {
std::cout << "error: " << e.what() << std::endl;

}

1.

Create a Euresys::EGrabberDiscovery object for a specific producer (gentl argument). The
object takes exclusive control of the producer interface and device lists. As long as the
discovery object exists, it prevents any other module to update the lists.

Update the producer interface and device lists and scan the system to discover the available
GenTL modules as well as the connected cameras at that moment.

3. Walk through the discovered grabbers.

For each discovered grabber, create a Euresys::EGrabber object; the function
discovery::egrabbers returns the relevant information that identifies the discovered grabber
for which a Euresys::EGrabber instance should be created.

Walk through the discovered cameras.

For each discovered camera, create a Euresys::EGrabber object; the function
discovery::cameras returns the relevant information that identifies the discovered camera for
which a Euresys::EGrabber instance should be created.

Remarks

The Euresys::EGrabberDiscovery provides two ways of exploring the system, a grabber-
oriented one and a camera-oriented one. The camera-oriented discovery is useful in at least
two situations:

e When an application needs to configure and/or use the cameras connected to the system
(and simply ignore the unused grabbers).

e When a multi-bank camera is connected to the system; a multi-bank camera is a camera
composed by several sub-Devices (which act as independent CoaXPress Devices). In this
case, each camera bank is connected to a specific GenTL device and exposes a data
stream. The camera-oriented discovery is able3 to (1) detect automatically the N banks
that make up the multi-bank camera, (2) reorder them, and (3) expose them as a unified
camera that can be easily instantiated as an Euresys::EGrabber object (itself composed of
N sub-grabbers). The resulting Euresys::EGrabber object hides the complexity of the
banks and behaves as a usual EGrabber object as far as acquisition is concerned.

eGrabber Programming eGrabber AY niied vision

..........

As long as Euresys::EGrabberDiscovery exists, any attempt to update interface or device lists
will trigger a not_allowed exception; this will happen if a Euresys::EGrabber object is created
using the index-based constructor instead of the “discovery” variants because the index-
based constructor updates the interface and device lists before opening the requested
GenTL modules.

Please refer to the Euresys::EGrabberDiscovery module documentation for a detailed description
of the API.

Acquiring images

This program uses eGrabber to acquire images from a camera connected to a Coaxlink card:

}

}

#include <iostream>
#include <EGrabber.h>

void grab() {

int main() {

Euresys::EGenTL gentl;
Euresys::EGrabber<> grabber(gentl); 11

grabber.reallocBuffers(3); 112
grabber.start(10); I3
for (size_ti=0;i<10; ++i) {
Euresys::ScopedBuffer buf(grabber); 114
void *ptr = buf.getInfo<void *>(GenTL::BUFFER_INFO_BASE); 115
uint64_t ts = buf.getinfo<uint64_t>(GenTL::BUFFER_INFO_TIMESTAMP); // 6
std::cout << "buffer address: " << ptr <<", timestamp: "
<<ts <<"us"<<std:endl;
} 17

try {
grab();
} catch (const std::exception &e) {
std::cout << "error: " << e.what() << std::endl;

}

1.

Create a Euresys::EGrabber object. The second and third arguments of the constructor are
omitted here. The grabber will use the first device of the first interface present in the system.

Allocate 3 buffers. The grabber automatically determines the required buffer size.

Start the grabber. Here, we ask the grabber to fill 10 buffers. If we don’t want the grabber to
stop after a specific number of buffers, we can do grabber.start(GenTL::GENTL_INFINITE), or

simply grabber.start().Starting the grabber involves the following operations:
o the AcquisitionStart command is executed on the camera;

o the DSStartAcquisition function is called to start the data stream.
In this example, we assume that the camera and frame grabber are properly configured. For
a real application, it would be safer to run a " Euresys GenApi scripts" on page 29 before
starting acquisitions (and before allocating buffers for that matter). This will be shown in
another example.

Wait for a buffer filled by the grabber. The result is a Euresys::ScopedBuffer. The term scoped
is used to indicate that the lifetime of the buffer is the current scope (i.e., the current block).

../../../IOdoc/egrabber-reference/class_euresys_1_1_e_grabber_discovery.html

eGrabber Programming eGrabber AY niieg vision

5. Retrieve the buffer address. This is done by calling the getinfo method of the buffer. This
method takes as argument a BUFFER_INFO_CMD. In this case, we request the BUFFER_
INFO_BASE, which is defined in the standard GenTL header file:enum BUFFER_INFO_CMD_
LIST{ BUFFER_INFO_BASE = 0, /* PTR Base address of the buffer memory. */ BUFFER_INFO_
SIZE =1, /* SIZET Size of the buffer in bytes. */ BUFFER_INFO_USER_PTR =2, /* PTR Private
data pointer of the GenTL Consumer. */ BUFFER_INFO_TIMESTAMP = 3, /* UINT64
Timestamp the buffer was acquired. */ // ... // other BUFFER_INFO definitions omitted // ...
BUFFER_INFO_CUSTOM_ID = 1000 /* Starting value for GenTL Producer custom IDs.
*/Ltypedef int32_t BUFFER_INFO_CMD;Notice that getinfo is a template method, and when
we call it we must specify the type of value we expect. BUFFER_INFO_BASE returns a
pointer; this is why we use getinfo<void *>.

6. Do the same to retrieve the timestamp of the buffer. This time, we use the uint64_t version of
getinfo to match the type of BUFFER_INFO_TIMESTAMP.Note that timestamps are always
64-bit and expressed as the number of microseconds that have elapsed since the computer
was started.

7. We reach the end of the for block. The local variable buf gets out of scope and is destroyed:
the ScopedBuffer destructor is called. This causes the GenTL buffer contained in buf to be re-
queued (given back) to the data stream of the grabber.

Example of program output:

buffer address: 0x7f3c32c54010, timestamp: 11247531003686 us
buffer address: 0x7f3c2c4bf010, timestamp: 11247531058080 us
buffer address: 0x7f3c2c37e010, timestamp: 11247531085003 us
buffer address: 0x7f3c32c54010, timestamp: 11247531111944 us
buffer address: 0x7f3c2c4bf010, timestamp: 11247531137956 us
buffer address: 0x7f3c2c37e010, timestamp: 11247531163306 us
buffer address: 0x7f3¢32c54010, timestamp: 11247531188600 us
buffer address: 0x7f3c2c4bf010, timestamp: 11247531213807 us
buffer address: 0x7f3c2c37e010, timestamp: 11247531239158 us
buffer address: 0x7f3c32c54010, timestamp: 11247531265053 us

We can see that the three buffers that were allocated (let’s call them A at 0x7f3c32c54010, B at
0x7f3c2c4bf010, and C at 0x7f3c2c37e010) are used in a round-robin fashion:A->B—>C—>A—>B
— C — -+ This is the result of:

e the FIFO nature of input and output buffer queues:

e the Coaxlink driver pops a buffer from the front of the input queue, and gives it to the
Coaxlink card for DMA transfer;

e when the transfer is complete, the buffer is pushed to the back of the output queue;
e the use of ScopedBuffer:

e the ScopedBuffer constructor pops a buffer from the front of the output queue (i.e., it
takes the oldest buffer);

e the ScopedBuffer destructor pushes that buffer to the back of the input queue (hence,
this buffer will be used for a new transfer after all buffers already in the input queue).

Configuring the grabber

Configuration is a very important aspect of any image acquisition program.

e The camera and the frame grabber both have to be configured according to the application
requirements.

http://www.emva.org/wp-content/uploads/GenTL_v1_5.h

eGrabber Programming eGrabber AY niied vision

e The camera configuration must be compatible with the frame grabber configuration, and
vice versa.

Configuration basically boils down to a series of " GenApi" on page 6 and/or " GenApi" on page
6 operations performed on the grabber modules: the remote device (i.e., the camera), the "
Interface module" on page 8, the " Device module" on page 9, or the " Data stream module" on
page 9 modules.

This program configures the grabber for the so-called RG control mode (asynchronous reset
camera control, frame grabber-controlled exposure).

#include <iostream>
#include <EGrabber.h>

const double FPS = 150;

void configure() {
Euresys::EGenTL gentl;
Euresys::EGrabber<> grabber(gentl);
/I camera configuration
grabber.setString<Euresys::RemoteModule>("TriggerMode", "On"); /11
grabber.setString<Euresys::RemoteModule>("TriggerSource", "CXPin"); 112
grabber.setString<Euresys::RemoteModule>("ExposureMode", "TriggerWidth"); /13
/l frame grabber configuration

grabber.execute<Euresys::DeviceModule>("DeviceReset"); 114
grabber.setString<Euresys::DeviceModule>("CameraControlMethod", "RG"); 115
grabber.setString<Euresys::DeviceModule>("CycleTriggerSource", "Immediate"); 116
grabber.setFloat<Euresys::DeviceModule>("CycleMinimumPeriod", 1e6 / FPS); 17
}
int main() {
try {
configure();

} catch (const std::exception &e) {
std::cout << "error: " << e.what() << std::endl;

}
}

Enable triggers on the camera.
Tell the camera to look for triggers on the CoaXPress link.
Configure the camera to use the TriggerWidth exposure mode.

Execute the DeviceReset command to restore default settings on the device module.

U A

Set the frame grabber’s camera control method to RG. In this mode, camera cycles are
initiated by the frame grabber, and the exposure duration is also controlled by the frame
grabber.

6. Tell the frame grabber to initiate camera cycles itself (at a rate defined by
CycleMinimumPeriod), without waiting for hardware or software triggers.

7. Configure the frame rate.

But there is a better way to configure the grabber. Using a " Euresys GenApi scripts" on page 29,
the program becomes:

#include <iostream>
#include <EGrabber.h>

void configure() {
Euresys::EGenTL gentl;
Euresys::EGrabber<> grabber(gentl);

eGrabber Programming eGrabber AY niied vision

..........

grabber.runScript("config.js");

}

int main() {
try {
configure();
} catch (const std::exception &e) {
std::cout << "error: " << e.what() << std::endl;

}

}

and the configuration script is:

var grabber = grabbers[0];

var FPS = 150;

/I camera configuration
grabber.RemotePort.set("TriggerMode", "On");
grabber.RemotePort.set("TriggerSource", "CXPin");
grabber.RemotePort.set("ExposureMode", "TriggerWidth");
/I frame grabber configuration
grabber.DevicePort.execute("DeviceReset");
grabber.DevicePort.set("CameraControlMethod", "RG");
grabber.DevicePort.set("CycleTriggerSource", "Immediate");
grabber.DevicePort.set("CycleMinimumPeriod", 1e6 / FPS);

Using a script file has several advantages:

e The configuration can be changed without recompiling the application. This allows shorter
development cycles, and makes it possible to update the configuration in the lab or in the
field.

e The configuration script can be loaded by the GenlCam Browser and the command-line gentl
tool. This makes is possible to validate the configuration outside of the user application.

e The configuration script can easily be shared by several applications written in different
programming languages: C++, C#, VB.NET---

e The full power of " Euresys GenApi scripts" on page 29 is available.

Events

Background

Coaxlink cards generate different kinds of events:
e New buffer events: events indicating that a buffer has been filled by a data stream.
e Data stream events: events related to a data stream and its frame store.

e Camera and illumination controller events: events related to the real-time control
(performed by a device) of a camera and its illumination devices.

e 1/0 toolbox events: events (coming from the interface) related to digital I/O lines and other
I/O tools.

e CoaXPress interface events: events (also coming from the interface) related to the CoaXPress
interface.

New buffer events are standard in GenTL. They occur when a buffer is filled by the frame
grabber. Information attached to new buffer events include the handle of the buffer and a
timestamp.

eGrabber Programming eGrabber AY niied vision

The other types of events are restricted to Coaxlink and can be viewed as categories of specific
events. For example, in the CIC category of events, we have:

e CameraTriggerRisingEdge (start of camera trigger)
e CameraTriggerFallingEdge (end of camera trigger)
e StrobeRisingEdge (start of light strobe)

e StrobeFallingEdge (end of light strobe)

e AllowNextCycle (CIC is ready for next camera cycle)
o

and in the I/0 toolbox category of events, we have:

e LIN1 (line input tool 1)

e LIN2 (line input tool 2)

e MDV1 (multiplier/divider tool 1)

Counters

Coaxlink firmware counts each occurrence of each event (except new buffer events) and makes
this counter available in a GenApi feature named EventCount. Each event has its own counter,
and the value of EventCount depends on the selected event:

/I select the CameraTriggerRisingEdge event
grabber.setString<DeviceModule>("EventSelector", "CameraTriggerRisingEdge");
/ read the value of the counter

int64_t counter = grabber.getinteger<DeviceModule>("EventCount");

or, using the selected feature notation:

/I read the value of the CameraTriggerRisingEdge counter
int64_t counter = grabber.getinteger<DeviceModule>("EventCount[CameraTriggerRisingEdge]");

Notifications

As we’ve just seen, when an event occurs, a dedicated counter is incremented. Coaxlink can also
notify the application of this event by having Euresys::EGrabber execute a user-defined "
eGrabber" on page 12. But first, it is required to enable notifications of one or more events:

grabber.setString<DeviceModule>("EventSelector", "CameraTriggerRisingEdge");
grabber.setinteger<DeviceModule>("EventNotification", true);
grabber.setString<DeviceModule>("EventSelector", "CameraTriggerFallingEdge");
grabber.setinteger<DeviceModule>("EventNotification", true);

or:

grabber.setinteger<DeviceModule>("EventNotification[CameraTriggerRisingEdge]", true);
grabber.setinteger<DeviceModule>("EventNotification[CameraTriggerFallingEdge]", true);

Using a " Euresys GenApi scripts" on page 29, it is easy to enable notifications for all events:

eGrabber Programming eGrabber AY niied vision

function enableAllEvents(p) { /11
var events = p.$ee('EventSelector'); /12
for (var e of events) {

p.set('EventNotification[' + e +'T', true); //3

}
}
var grabber = grabbers[0];
enableAllEvents(grabber.InterfacePort); 114
enableAllEvents(grabber.DevicePort); 115
enableAllEvents(grabber.StreamPort); 116

1. Define a helper function named enableAllEvents and taking as argument a module (or port) p.

2. Use the $ee function to retrieve the list of values EventSelector can take. This is the list of
events generated by module p. (ee stands for enum entry.)

3. For each event, enable notifications. (The + operator concatenates strings, so if e is 'LIN1',
the expression 'EventNotification[' + e +']' evaluates to 'EventNotification[LIN1]'.)

4. Call the enableAllEvents function defined in step 1 for the interface module. This will enable
notifications for all events in the I/0 toolbox and CoaXPress interface categories.

5. Likewise, enable notifications for all events coming from the device module (CIC events).

6. Finally, enable notifications for all data stream events.

Callback functions

When an event occurs, and event notification is enabled for that event, Euresys::EGrabber
executes one of several callback functions.

These callback functions are defined in overridden virtual methods:

class MyGrabber : public Euresys::EGrabber<>

{
public:

private:
/I callback function for new buffer events
virtual void onNewBufferEvent(const NewBufferData& data) {

:

/I callback function for data stream events
virtual void onDataStreamEvent(const DataStreamData &data) {

:

/I callback function for CIC events
virtual void onCicEvent(const CicData &data) {

}

/[callback function for I/O toolbox events
virtual void onloToolboxEvent(const loToolboxData &data) {

}

/I callback function for CoaXPress interface events
virtual void onCxplnterfaceEvent(const CxplnterfaceData &data) {

eGrabber Programming eGrabber AY niied vision

B

As you can see, a different callback function can be defined for each category of events.

In .NET, callback functions are defined by creating delegates rather than overriding virtual
methods. An example will be given in " .NET assembly" on page 56.

Event identification

When an event is notified to the application, the callback function that is executed indicates the
category of that event. The actual event that occurred is identified by a numerical ID, called
numid, and defined in include/GenTL_EuresysCustom.h:

enum EVENT_DATA_NUMID_CUSTOM_LIST

{
/EVENT_CUSTOM_IO_TOOLBOX
EVENT_DATA_NUMID_IO_TOOLBOX_LIN1 ... /*Line Input Tool 1*/
EVENT_DATA_NUMID_IO_TOOLBOX_LIN2 ... /*Line Input Tool 2 */
EVENT_DATA_NUMID_IO_TOOLBOX_MDV1 = ... [* Multiplier/Divider Tool 1 */

/EVENT_CUSTOM_CXP_INTERFACE

/EVENT_CUSTOM_CIC

EVENT_DATA_NUMID_CIC_CAMERA_TRIGGER_RISING_EDGE =... /* Start of camera trigger */
EVENT_DATA_NUMID_CIC_CAMERA_TRIGGER_FALLING_EDGE =... /* End of camera trigger */
EVENT_DATA_NUMID_CIC_STROBE_RISING_EDGE = ... [* Start of light strobe */
EVENT_DATA_NUMID_CIC_STROBE_FALLING_EDGE = ... /* End of light strobe */

/ EVENT_CUSTOM_DATASTREAM
EVENT_DATA_NUMID_DATASTREAM_START_OF_CAMERA_READOUT = ... /* Start of camera readout */
EVENT_DATA_NUMID_DATASTREAM_END_OF_CAMERA_READOUT =... /* End of camera readout */

b

For reference, the following table lists the relationships between:
e the module generating events

e the category of events

e the name of the callback function

e the data type passed to the callback function

e the common numid prefix

Module Category Callback function Data type numid prefix
Data New Buffer onNewBufferEvent NewBufferData -
stream
Data Data EVENT_DATA_NUMID_
stream Stream onDataStreamEvent DataStreamData DATASTREAM.
Device CIC onCicEvent CicData EVENT_DATA_NUMID CIC _
I/0 EVENT_DATA_NUMID |10 _
Interface Toolbox onloToolboxEvent loToolboxData TOOLBOX._
CXP EVENT_DATA_NUMID_CXP_
Interface Interface onCxplnterfaceEvent CxplnterfaceData INTERFACE

../../../IOdoc/egrabber-reference/_gen_t_l___euresys_custom_8h.html

eGrabber Programming eGrabber AY niieg vision

Note that:
e There is only one event in the new buffer event category, so we don’t need a numid there.

e Asimple naming scheme is followed: a category of events named some category has a
callback function named onSomeCategoryEvent which takes as argument a
SomeCategoryData structure, and uses EVENT_DATA_NUMID_SOME_CATEGORY _ as
common numid prefix.

Examples

We’ll soon show a few complete " Events and callbacks examples" on page 24 illustrating events
and callbacks, but there is one more thing we need to explain before we can do that: the
context in which callback functions are executed. This is the subject of the "EGrabber flavors"
on page 23.

EGrabber flavors

When should the callback functions be called? From which context (i.e., which thread)? Thinking
about these questions leads to the definition of several callback models:

e The application asks the grabber: “Do you have any buffer or event for me? If yes, execute
my callback function now.” This is a polling, synchronous mode of operation, where
callbacks are executed when the application demands it, in the application thread.We’ll refer
to this callback model as on demand.

e The application asks the grabber to create a single, dedicated thread, and to wait for events
in this thread. When an event occurs, the grabber executes the corresponding callback
function, also in this single callback thread.We’ll refer to this callback model as single thread.

e The application asks the grabber to create a dedicated thread for each of its callback
functions. In each of these threads, the grabber waits for a particular category of events.
When an event occurs, the corresponding callback function is executed in that thread.We’ll
refer to this callback model as multi thread.

These three callback models all make sense, and each one is best suited for some applications.

e The on demand model is the simplest. Although its implementation may use worker threads,
from the point of view of the user it doesn’t add any thread. This means that the application
doesn’t need to worry about things such as thread synchronization, mutexes, etc.

e If the user wants a dedicated callback thread, the single thread model creates it for
him.When we have only one thread, things are simple. In this model, the grabber is used in
(at least) two threads, so we need to start worrying about synchronization and shared data.

e In the multi thread model, each category of event gets its own thread. The benefit of this is
that events of one type (and the execution of their callback functions) don’t delay
notifications of events of other types. For example, a thread doing heavy image processing in
onNewBufferEvent will not delay the notification of CIC events by onCicEvent (e.g., events
indicating that the exposure is complete and that the object or camera can be moved).In this
model, the grabber is used in several thread, so the need for synchronization is present as it
is in the single thread model.Of course, the application must also be aware that it might
receive notifications for events of type X that are older than notifications of events of type Y
that have already been received and processed. After all, this is the differentiating factor
between the single thread and multi thread models.

eGrabber Programming eGrabber AY niied vision

To give the user maximum flexibility, we support all three callback models. This is why
Euresys::EGrabber exists in different flavors. So far, we have eluded the meaning of the angle
brackets in EGrabber<>. The EGrabber class is actually a template class, i.e., a class that is
parameterized by another type:

e In this case, the template parameter is the callback model to use: one of CallbackOnDemand,
CallbackSingleThread or CallbackMultiThread.

e The empty <> are used to select the default template parameter, which is
CallbackOnDemand.

e The types of grabber that can be instantiated are:
e EGrabber<CallbackOnDemand>
e EGrabber<CallbackSingleThread>
e EGrabber<CallbackMultiThread>
e EGrabber<> which is equivalent to EGrabber<CallbackOnDemand>

e The eGrabber header file also defines the following type aliases (synonyms):typedef
EGrabber<CallbackOnDemand> EGrabberCallbackOnDemand;typedef
EGrabber<CallbackSingleThread> EGrabberCallbackSingleThread;typedef
EGrabber<CallbackMultiThread> EGrabberCallbackMultiThread;

e The .NET generics don’t quite match the C++ templates, so in .NET the template EGrabber
class does not exist and we must use one of EGrabberCallbackOnDemand,
EGrabberCallbackSingleThread or EGrabberCallbackMultiThread.

Events and callbacks examples

On demand callbacks

This program displays basic information about CIC events generated by a grabber:

#include <iostream>
#include <EGrabber.h>

using namespace Euresys; /11
class MyGrabber : public EGrabber<CallbackOnDemand> { /12
public:
MyGrabber(EGenTL &gentl) : EGrabber<CallbackOnDemand>(gentl) { 113
runScript(“config.js"); 14
enableEvent<CicData>(); 115

reallocBuffers(3);
start();

}

private:
virtual void onCicEvent(const CicData &data) {
std::cout << "timestamp: " << std::dec << data.timestamp <<"us, " // 6
<< "numid: 0x" << std::hex << data.numid 116
<<" (" << getEventDescription(data.numid) <<")"
<< std::endl;

B

int main() {
try {

eGrabber Programming eGrabber AY niied vision

EGenTL gentl;
MyGrabber grabber(gentl);
while (true) {
grabber.processEvent<CicData>(1000); 17
}
} catch (const std::exception &e) {
std::cout << "error: " << e.what() << std::endl;
}
}

=

This using directive allows writing Xyz instead of Euresys::Xyz. This helps keep lines relatively
short.

2. Define a new class MyGrabber which is derived from EGrabber<CallbackOnDemand>.

3. MyGrabber’s constructor initializes its base class by calling EGrabber<CallbackOnDemand>’s
constructor.

4. Run a config.js script which should:
o properly configure the camera and frame grabber;

o enable notifications for CIC events.
5. Enable onCicEvent callbacks.

6. The onCicEvent callback function receives a const CicData &. This structure is defined in
include/EGrabberTypes.h. It contains a few pieces of information about the event that
occurred. Here, we display the timestamp and numid of each event. The " eGrabber" on page
12 indicates which CIC event occurred.

7. Call processEvent<CicData>(1000):
o the grabber starts waiting for a CIC event;

o if an event occurs within 1000 ms, the grabber executes the onCicEvent callback
function;

o otherwise, a timeout exception will be thrown.

Example of program output:

timestamp: 1502091779 us, numid: 0x804 1 (Start of camera trigger)

timestamp: 1502091784 us, numid: 0x8048 (Received acknowledgement for previous CXP trigger message)
timestamp: 1502091879 us, numid: 0x8043 (Start of light strobe)

timestamp: 1502092879 us, numid: 0x8044 (End of light strobe)

timestamp: 1502097279 us, numid: 0x8042 (End of camera trigger)

timestamp: 1502097284 us, numid: 0x8048 (Received acknowledgement for previous CXP trigger message)
timestamp: 1502191783 us, numid: 0x8041 (Start of camera trigger)

timestamp: 1502191783 us, numid: 0x8045 (CIC is ready for next camera cycle)

timestamp: 1502191788 us, numid: 0x8048 (Received acknowledgement for previous CXP trigger message)
timestamp: 1502191883 us, numid: 0x8043 (Start of light strobe)

timestamp: 1502192883 us, numid: 0x8044 (End of light strobe)

timestamp: 1502197283 us, numid: 0x8042 (End of camera trigger)

timestamp: 1502197288 us, numid: 0x8048 (Received acknowledgement for previous CXP trigger message)
timestamp: 1502291788 us, numid: 0x804 1 (Start of camera trigger)

timestamp: 1502291788 us, numid: 0x8045 (CIC is ready for next camera cycle)

Single thread and multi thread callbacks

This program displays basic information about CIC events generated by a grabber, this time
using the CallbackSingleThread model.

eGrabber Programming eGrabber AY niied vision

#include <iostream>
#include <EGrabber.h>

using namespace Euresys;

class MyGrabber : public EGrabber<CallbackSingleThread> { /1
public:
MyGrabber(EGenTL &gentl) : EGrabber<CallbackSingleThread>(gentl) { //2
runScript(“config.js");
enableEvent<CicData>();
reallocBuffers(3);
start();

}

private:
virtual void onCicEvent(const CicData &data) {
std::cout << "timestamp: " << std::dec << data.timestamp <<"us, "
<< "numid: 0x" << std::hex << data.numid
<<" (" << getEventDescription(data.numid) <<")"
<< std::endl;

B

int main() {
try {
EGenTL gentl;
MyGrabber grabber(gentl);
while (true) { 113
}
} catch (const std::exception &e) {
std::cout << "error: " << e.what() << std::endl;
}
}

There are very few differences between this program and the " eGrabber" on page 12 version:

1. MyGrabber is derived from EGrabber<CallbackSingleThread> instead of
EGrabber<CallbackOnDemand>.

2. Consequently, MyGrabber’s constructor initializes its base class by calling
EGrabber<CallbackSingleThread>’s constructor.

3. EGrabber creates a callback thread in which it calls processEvent, so we don’t have to. Here,
we simply enter an infinite loop.

As you can see, moving from CallbackOnDemand to CallbackSingleThread is very simple. If
instead you want the CallbackMultiThread variant, simply change the base class of MyGrabber to
EGrabber<CallbackMultiThread> (and call the appropriate constructor).

New buffer callbacks

This program shows how to access information related to new buffer events. It uses
CallbackMultiThread, but it could use another callback method just as well.

#include <iostream>
#include <EGrabber.h>

using namespace Euresys;
class MyGrabber : public EGrabber<CallbackMultiThread> {

public:
MyGrabber(EGenTL &gentl) : EGrabber<CallbackMultiThread>(gentl) {

eGrabber Programming eGrabber AY niied vision

runScript("config.js");
enableEvent<NewBufferData>();
reallocBuffers(3);

start();

}

private:
virtual void onNewBufferEvent(const NewBufferData &data) {
ScopedBuffer buf(*this, data); /A
uint64_tts = buf.getinfo<uint64_t>(gc::BUFFER_INFO_TIMESTAMP); //2
std::cout << "event timestamp: " << data.timestamp <<"us," //3

<< "buffer timestamp: " << ts << " us" << std::endl;
} 4

B

int main() {

try {
EGenTL gentl;
MyGrabber grabber(gentl);
while (true) {
}

} catch (const std::exception &e) {
std::cout << "error: " << e.what() << std::endl;

}

}

1. In onNewBufferEvent, create a temporary ScopedBuffer object buf. The ScopedBuffer
constructor takes two arguments:
o the grabber owning the buffer: since we are in a class derived from EGrabber, we
simply pass *this;

o information about the buffer: this is provided in data.

2. Retrieve the timestamp of the buffer, which is defined as the time at which the camera
started to send data to the frame grabber. Note that Euresys::gc is an alias for the standard
GenTL C++ namespace.

3. As explained in the section about " eGrabber" on page 12, new buffer events are slightly
different from the other kinds of events: they are standard (as per GenTL), and don’t have an
associated numid.As a consequence, the NewBufferData structure passed to onNewBufferEvent
doesn’t have a numid field. It does, however, have a timestamp field indicating the time at
which the driver was notified that data transfer to the buffer was complete. This event
timestamp is inevitably greater than the buffer timestamp retrieved in step 2.

4. We reach the end of the block where the local variable buf has been created. It gets out of
scope and is destroyed: the ScopedBuffer destructor is called. This causes the GenTL buffer
contained in buf to be re-queued (given back) to the data stream of the grabber.

Example of program output:

event timestamp: 77185931621 us, buffer timestamp: 77185919807 us
event timestamp: 77185951618 us, buffer timestamp: 77185939809 us
event timestamp: 77185971625 us, buffer timestamp: 77185959810 us
event timestamp: 77185991611 us, buffer timestamp: 77185979812 us
event timestamp: 77186011605 us, buffer timestamp: 77185999808 us
event timestamp: 77186031622 us, buffer timestamp: 77186019809 us
event timestamp: 77186051614 us, buffer timestamp: 77186039810 us
event timestamp: 77186071611 us, buffer timestamp: 77186059811 us
event timestamp: 77186091602 us, buffer timestamp: 77186079812 us
event timestamp: 77186111607 us, buffer timestamp: 77186099814 us

eGrabber Programming eGrabber

Relevant files

” Allied Vision

include/EGrabber.h

Main header. Includes all the other headers
except include/FormatConverter.h. Defines
Euresys::EGrabber, Euresys::Buffer,
Euresys::ScopedBuffer.

include/EGrabberDiscovery.h

Defines Euresys::EGrabberDiscovery.

include/EGrabberTypes.h

Defines data types related to Euresys::EGrabber.

include/EGenTL.h

Defines Euresys::EGenTL.

include/GenTL_v1_5.h

Standard GenTL header. Defines standard types,
functions and constants.

include/GenTL_EuresysCustom.h

Defines eGrabber-specific constants.

include/FormatConverter.h

Defines Euresys::FormatConverter helper class.

../../../IOdoc/egrabber-reference/_e_grabber_8h.html
../../../IOdoc/egrabber-reference/_e_grabber_discovery_8h.html
../../../IOdoc/egrabber-reference/_e_grabber_types_8h_source.html
../../../IOdoc/egrabber-reference/_e_gen_t_l_8h.html
../../../IOdoc/egrabber-reference/_gen_t_l__v1__5_8h.html
../../../IOdoc/egrabber-reference/_gen_t_l___euresys_custom_8h.html
../../../IOdoc/egrabber-reference/_format_converter_8h.html

eGrabber Programming eGrabber AY niied vision

0. Euresys GenAp

SCripts

The Euresys GenApi Script language is documented in a few GenApi scripts. For convenience,
they are also included here.

doc/basics.js

/I Euresys GenApi Script uses a syntax inspired by JavaScript, but is not

/I exactly JavaScript. Using the extension .js for scripts is just a way to get

/Il proper syntax highlighting in text editors.

1

/I This file describes the basics of Euresys GenApi Script. It can be executed
/I by running 'gentl script <path-to-coaxlink-scripts-dir>/doc/basics.js', or

/I more simply 'gentl script egrabber://doc/basics.js'.

/I Euresys GenApi Script is case-sensitive.

/I Statements are always separated by semicolons (JavaScript is more
/I permissive).

/I Single-line comment

/* Multi-line comment
(cannot be nested)
*/

/I Function declaration
function multiply(a, b) {
returna * b;

}

/I Functions can be nested
function sumOfSquares(a, b) {
function square(x) {
return x * x;
}
return square(a) + square(b);

}

/I Variable declaration
function Variables() {
varx=1; /1
vary=2%*x; /12
var z; / undefined

}

/I Data types
function DataTypes() {
/I Primitive types: Boolean, Number, String, undefined
function Booleans() {
var x = true;
vary = false;
}
function Numbers() {
var x = 3.14159;
vary =-1;

eGrabber Programming eGrabber KY hiieg vision

varz = 6.022e23;
}
function Strings() {
var empty ="";
var x = "euresys";
vary = 'coaxlink’;
varz=x+""+y;// euresys coaxlink
assertEqual(x, z.slice(0, 7));
assertEqual(y, z.slice(8));
}
function Undefined() {
/I undefined is the type of variables without a value
/I undefined is also a special value
var x; // undefined
x=1; // x has a value
x = undefined; // x is now again undefined
}
/I Objects: Object (unordered set of key/value pairs), Array (ordered list
/I of values), RegExp (regular expression)
function Objects() {
/I Construction
varempty = {};
varx={a:1,b:2,¢c:3};
vary = { other: x };
/I Access to object properties
varsum1 =x.a + x.b + x.c; // dot notation
var sum2 = x['a'] + x['b'] + x['c']; // bracket notation
/I Adding properties
xd=4; /Ix:{a:1,b:2,c:3,d:4}
x["e"]=5;/x:{a:1,b:2,c:3,d:4,e:5}
}
function Arrays() {
/I Construction
varempty = [;
var x =[3.14159, 2.71828];
var mix = [1, false, "abc", {}];
/I Access to array elements
var sum = x[0] + x[1]; // bracket notation
/I Adding elements
x[2] =1.61803; // x: [3.14159, 2.71828, 1.61803]
x[4] = 1.41421; // x: [3.14159, 2.71828, 1.61803, undefined, 1.41421];
}
function RegularExpressions() {
var x = /CXP[36]_X[124]/;
}
Booleans();
Numbers();
Strings();
Undefined();
Objects();
Arrays();
}

/I Like JavaScript, Euresys GenApi Script is a dynamically typed language. The
Il type of a variable is defined by the value it holds, which can change.
function DynamicVariables() {

var x = 1; // Number

X ="x is now a string";

}

/I Object types are accessed by reference.

function References() {
varx =[3.14159, 2.71828]; // x is a reference to an array
vary = x; /l'y is a reference to the same array
assertEqual(x.length, y.length);

eGrabber Programming eGrabber

KY niied vision

assertEqual(x[0], y[0]);
assertEqual(x[1], y[1]);
y[2] = 1.61803; /I the array can be modified via any reference
assertEqual(x[2], y[2]);

function update(obj) {
/I objects (including arrays) are passed by reference
obj.updated = true;
obj.added = true;
}
var z = {initialized: true, updated: false };
assertEqual(true, z.initialized);
assertEqual(false, z.updated);
assertEqual(undefined, z.added);
update(z);
assertEqual(true, z.initialized);
assertEqual(true, z.updated);
assertEqual(true, z.added);

}

/I Supported operators

function Operators() {
/I From lowest to highest precedence:
/I Assignment operators: = += -= *= /=
varx = 3;
X+=2;
x-=1;
X *=3;
X /=5;
assertEqual(2.4, x);
/I Logical OR: ||
assertEqual(true, false || true);
assertEqual('ok’, false || 'ok’);
assertEqual('ok’, 'ok’ || ignored');
/I Logical AND: &&
assertEqual(false, true && false);
assertEqual(true, true && true);
assertEqual('ok’, true && 'ok’);

assertEqual(true, 1===2/2);

assertEqual(true, 1 1==2);

/I Equality (==) and inequality (!=) JavaScript operators lead to confusing
/I and inconsistent conversions of their operands. They are not implemented
/l'in Euresys GenApi Script.

/I Relational operators: < <=> >=

assert(1<2);

assert(1<=1);

assert(2>1);

assert(2 >= 2);

/I Addition and subtraction: + -

assertEqual(1, 3 - 2);

assertEqual(5, 2 + 3);

assertEqual("abcdef", "abc" + "def"); // if one of the operands is of type
assertEqual("abc123", "abc" + 123); // string, all operands are converted
assertEqual("123456", 123 + "456"); // to string, and concatenated

/I Multiplication and division: */

assertEqual(4.5,3 *3/2);

/I Prefix operators: ++ -- | typeof

varx =0;

assertEqual(1, ++x);

assertEqual(1, x);

assertEqual(0, --x);

assertEqual(0, x);

assertEqual(true, 'false);

assertEqual('boolean’, typeof false);

eGrabber Programming eGrabber

KY niied vision

assertEqual('number’, typeof 0);
assertEqual('string’, typeof ");
assertEqual('undefined', typeof undefined);
assertEqual(‘function’, typeof function () {});
assertEqual(‘object’, typeof {});
assertEqual('object’, typeof []);
assertEqual('object’, typeof /re/);
assertEqual(‘object’, typeof null);
/I Postfix operators: ++ --
var x = 0;
assertEqual(0, x++);
assertEqual(1, x);
assertEqual(1, x--);
assertEqual(0, x);
/I Function call: ()
assertEqual(6, multiply(3, 2));
assertEqual(13, sumOfSquares(3, 2));
/I Member access: . []
varobj={a:1};
assertEqual(1, obj.a);
obj['4"] = *four’;
assertEqual('four', obj[2*2]);

}

/I Scope of variables
function OuterFunction() {
var x = 'outer x';
function Shadowing() {
assertEqual(undefined, x);
var x ='inner x';
assertEqual('inner X', x);
}
function Nested() {
assertEqual(‘outer x', x);
var y = 'not accessible outside Nested';
X +="changed in Nested'";
}
function NoBlockScope() {
varx=1;
assertEqual(1, x);
if (true) {
/I The scope of variables is the function.
/[This variable x is the same as the one outside the if block.
varx =2;
}
assertEqual(2, x);
}
assertEqual('outer x', x);
Shadowing();
assertEqual('outer x', x);
Nested();
assertEqual(‘outer x changed in Nested', x);
NoBlockScope();
}

/I Loops
function Loops() {
/I for loops
function ForLoops() {
vari;
var sum = 0;
for (i=0;i<6; ++i) {
sum +=i;
}

assertEqual(15, sum);

eGrabber Programming eGrabber

KY Alied vision

}
/[for..in loops: iterating over indices
function ForlnLoops() {
varxs =[1, 10, 100, 1000];
varsum = 0;
for (variinxs) {
sum += xsi];
}
assertEqual(1111, sum);
varobj ={one: 1, two: 2};
var sum = 0;
for (var p in obj) {
sum += obj[p];
}
assertEqual(3, sum);
var str = "Coaxlink";
varsum ="";
for (variin str) {
sum += strli];
}
assertEqual("Coaxlink", sum);
}
/[for..of loops: iterating over values
function ForOfLoops() {
var xs =[1, 10, 100, 1000];
var sum = 0;
for (var x of xs) {
sum +=x;
}
assertEqual(1111, sum);
varobj={one: 1,two: 2},
var sum = 0;
for (var x of obj) {
sum +=x;
}
assertEqual(3, sum);
var str = "Coaxlink";
varsum="",
for (var c of str) {
sum +=¢;
}
assertEqual("Coaxlink", sum);
}
function ContinueAndBreak() {
vari;
var sum = 0;
for (i=0; i< 100; ++i) {
if (i === 3) {
continue;
}else if (i===6) {
break;
}else{
sum +=i;
}
}
assertEqual(0 + 1 +2 +4 + 5, sum);
}
ForLoops();
ForlnLoops();
ForOfLoops();
ContinueAndBreak();

}

function Exceptions() {
var x;

eGrabber Programming eGrabber AY niieg vision

var caught;
var finallyDone;
function f(action) {
x=0;
caught = undefined;
finallyDone = false;
try {
x=1;
if (action === "fail') {
throw action;
} else if (action === "return’) {
return;
}
X=2;
} catch (e) {
/I Executed if a throw statement is executed.
assertEqual(1, x);
caught=e;
} finally {
/I Executed regardless of whether or not a throw statement is
/I executed. Also executed if a return statement causes the
/I function to exit before the end of the try block.
finallyDone = true;
}
}
f('fail');
assertEqual(1, x);
assertEqual(‘fail', caught);
assert(finallyDone);
f('return’);
assertEqual(1, x);
assert(!caught);
assert(finallyDone);
f();
assertEqual(2, x);
assert(!caught);
assert(finallyDone);

}

function CharCode() {
assertEqual(0x41, "ABC".charCodeAt());
assertEqual(0x42, "ABC".charCodeAt(1));
assertEqual(0x43, "ABC".charCodeAt(2));
assertEqual("A", String.fromCharCode(0x41));
assertEqual("ABC", String.fromCharCode(0x41, 0x42, 0x43));

/I Run tests
Variables();
DynamicVariables();
DataTypes();
References();
Operators();
OuterFunction();
Loops();
Exceptions();
CharCode();

function assertEqual(expected, actual) {
if (expected !== actual) {
throw 'expected: ' + expected + ', actual: ' + actual;
}
}

eGrabber Programming eGrabber

KY niied vision

function assert(condition) {
if (Icondition) {
throw 'failed assertion’;

}

}

doc/builtins.js

/I This file describes the builtins (functions or objects) of Euresys GenApi
/I Script. It can be executed by running 'gentl script
/I egrabber://doc/builtins.js'.

/I The builtin object 'console' contains a function 'log' which can be

/I used to output text to the standard output (if available) as well as to

/I Memento with the notice verbosity level.

console.log('Hello from ' + module.filename);

console.log('If several arguments are passed,’, 'they are joined with spaces');
console.log('All text is sent to both standard output and Memento');

/I The builtin object 'memento’ contains the following functions: error,

/I warning, notice, info, debug, verbose (each corresponding to a different
/I verbosity level in Memento). They are similar to console.log, except that
/l the text is only sent to Memento.

memento.error(‘error description');

memento.warning(‘warning description');

memento.notice('important notification');

memento.info('message');

memento.debug('debug information');

memento.verbose('more debug information’);

/I object 'memento’; the functions are similar to their 'memento’ counterparts,
/I except that they also send text to the standard output if available
console.error(‘error description');

console.warning(‘warning description');

console.notice('important notification');

console.info('message');

console.debug('debug information');

console.verbose('more debug information');

/I Explicit type conversion/information functions:

console.log('Boolean(0) ="' + Boolean(0)); /l false
console.log('Boolean(3) ="' + Boolean(3)); I/ true
console.log('Number(false) ="' + Number(false)); //0

1 (

console.log('Number(true) = ' + Number(true)); 11
console.log('Number("3.14") ="'+ Number("3.14")); //3.14
console.log('Number("0x16") ="' + Number("0x16")); // 22
console.log('Number("1e-9") ="'+ Number("1e-9"); // 1e-9
'String(false) ="' + String(false)); // "false”

console.log
console.log('String(true) ="' + String(true)); /I "true"
console.log('String(3.14) ="' + String(3.14)); /1"3.14"

(
(
(
(
(
(
(
(
(
console.log('String([1, 2]) ="'+ String([1, 2])); /"1,2"
console.log('isNaN(0/0) ="' + isNaN(0/0)); I/ true
console.log(‘isNaN(Infinity) =" + isNaN(Infinity)); //false
console.log('isRegExp(/re/) ="' + isRegExp(/re/)); // true
console.log('isRegExp("/re/") ="' + isRegExp("/re/")); //false
console.log('Array.isArray({}) = ' + Array.isArray({})); // false
console.log('Array.isArray([]) ="' + Array.isArray([])); // true

/I The builtin object 'Math' contains a few functions:
console.log('Math.floor(3.14) =" + Math.floor(3.14));
console.log('Math.ceil(3.14) ="' + Math.ceil(3.14));

/I For convenience, the object 'console' also contains the same methods as the

eGrabber Programming eGrabber

KY niied vision

console.log('"Math.abs(-1.5) ="' + Math.abs(1.5));
console.log('Math.pow(2, 5) ="' + Math.pow(2, 5));
console.log('"Math.log2(2048) ="' + Math.log2(2048));

/I String manipulation
console.log("'Duo & Duo".replace(/Duo/, "Quad") =" +

"Duo & Duo".replace(/Duo/, "Quad") +"); // "Quad & Duo"
console.log("'Duo & Duo".replace(/Duo/g, "Quad") =" +

"Duo & Duo".replace(/Duo/g, "Quad") + "); // "Quad & Quad"
console.log("Hello, Coaxlink".toLowerCase() =™ +

"Hello, Coaxlink".toLowerCase() +™); // "hello, coaxlink"
console.log("Coaxlink Quad G3".includes("Quad") ="' +

"Coaxlink Quad G3".includes("Quad")); // true
console.log("Coaxlink Quad".includes("G3") ="'+

"Coaxlink Quad".includes("G3")); /I false
console.log("'Coaxlink Quad G3".split(" ") =["' +

"Coaxlink Quad G3".split("") +'); // [Coaxlink,Quad,G3]
console.log("Coaxlink Quad G3".split("Quad") =[' +

"Coaxlink Quad G3".split("Quad") +'T'); //[Coaxlink , G3]
console.log('["Mono", "Duo", "Quad"].join() =" +

["Mono", "Duo", "Quad"].join() +"); //"Mono,Duo,Quad"
console.log('["Mono", "Duo", "Quad"].join(" & ") =" +

["Mono", "Duo", "Quad"].join(" & ") +"™'); // "Mono & Duo & Quad"

/I Utility functions
sleep(0.5); // pause execution of script for 0.5 second

/I The builtin function 'require’ loads a script, executes it, and returns
/ the value of the special 'module.exports' from that module.

var mod1 = require('./module.js');

console.log('mod1.description: ' + mod1.description);
console.log('mod1.plus2(3): ' + mod1.plus2(3));

console.log('calling mod1.hello()...");

mod1.hello();

/ 'require' can deal with:
/I - absolute paths
/I var mod = require('C:\\absolute\\path\\some-module.js");
/I - relative paths (paths relative to the current script)
/I var mod = require("./utils/helper.js');
/I - egrabber:// paths (paths relative to the directory where eGrabber scripts
/I are installed)
/I var mod = require(‘egrabber://doc/builtins.js');
/I - custom:// paths (path relative to the eGrabber configuration directory)
/I var mod = require('custom://cameras/manual.js');
for (var p of ['./utils/helper.js', 'egrabber://doc/builtins.js',
‘custom://cameras/manual.js') {
console.log(p +'->"+ system.resolve(p));

}

console.log('random(0,1): ' + random(0,1)); // random number between 0 and 1

doc/grabbers.js

/I This file describes the 'grabbers' object of Euresys GenApi Script. It can
/I be executed by running 'gentl script egrabber://doc/grabbers.js'.

/I The builtin object 'grabbers' is a list of objects giving access to the

/I available GenTL modules/ports.

/I the 'gentl script' command, 'grabbers' contains the list of all devices.
/I This makes it possible to configure several cameras and/or cards.

/I In most cases, 'grabbers' contains exactly one element. However, when using

eGrabber Programming eGrabber

KY niied vision

console.log("grabbers.length:", grabbers.length);

/I Each item in 'grabbers' encapsulates all the ports related to one data
// stream:

/I TLPort | GenTL producer

/I InterfacePort | Coaxlink card

/I DevicePort | local device

/| StreamPort | data stream

/I RemotePort | camera (if available)

var PortNames = [TLPort', 'InterfacePort’, 'DevicePort', 'StreamPort’,
'RemotePort;

/I Ports are objects which provide the following textual information:
/I name | one of PortNames
/I tag | port handle type and value (as shown in memento traces)

for (variin grabbers) {
var g = grabbersli;
console.log('- grabbers[' +i+');
for (var pn of PortNames) {
var port = g[pn];
console.log(' -'+ port.name +' (' + port.tag +')");
}
}

/I Ports also have the following functions to work on GenlCam features:
/I get(f) | get value of f

Il set(f,v) | setvaluevtof

/I execute(f) | execute f

/I done(f) | test if command f is done (execution completed)
/I features([re]) | get list of features [matching™ re]

/I $features([re]) | strict* variant of features([re])

/I featuresOf(c, [re]) | get list of features of category c [matching™ re]

/I $featuresOf(c, [re]) | strict* variant of featuresOf(c, [re])

/I categories([re]) | get list of categories [matching™ re]

/I $categories([re]) | strict* variant of categories([re])

/I categoriesOf(c, [re]) | get list of categories of category c [matching™ re]
/I $categoriesOf(c, [re]) | strict* variant of categoriesOf(c, [re])

/I ee(f,[re]) | get list of enum entries [matching™ re]

1 | of enumeration f

I $ee(f,[re]) | strict* variant of ee(f,[re])

/I has(f) | testif f exists

/I has(f,v) | test if f has an enum entry v

/I available(f) | testif f is available

/I available(f,v) | test if f has an enum entry v which is available
/I readable(f) | testif fis readable

/I writeable(f) | test if f is writeable

/I implemented(f) | test if f is implemented

/I command(f) | testif fis a command

/I selectors(f) | get list of features that act as selectors of f
/I attributes(...) | extract information from the XML file describing
1 | the port

/I interfaces(f) | get list of interfaces of f (e.g. ["linteger"])
/I source(f) | get the XML source of f

/I info(f,what) | get XML information what of

/I declare(t,f) | declare a virtual user feature f of type t,

1 | t can be one of "integer”, "float", "string"

/I undeclare(f) | undeclare (delete) a virtual user feature f
/I declared() | get list of virtual user features

1

/I * by strict we mean that the returned list contains only nodes/values
/I that are available (as dictated by 'plsAvailable' GenlCam node elements)
/I ~ the returned list is filtered by regular expression matching

eGrabber Programming eGrabber KY hiieg vision

if (grabbers.length) {
var port = grabbers|[0].InterfacePort;
console.log('Playing with', port.tag);
11 get(f)
console.log('- InterfacelD: ' + port.get('InterfacelD"));
/I set(f,v)
port.set('LineSelector’, TTLIO11");
/I execute(f)
port.execute('DeviceUpdatelList');
/I features(re)
console.log('- Features matching \'PCle\"");
for (var f of port.features('PCle')) {
console.log(' -'+f);
}
11 $ee(f)
console.log('- Available enum entries for LineSource:');
for (var ee of port.$ee('LineSource")) {
console.log(' - '+ ee);
}
for (varix of [0, 1, 2, 3, 9]) {
var ee = 'Device' + ix + 'Strobe’;
/' has(f, v)
if (port.has('LineSource', ee)) {
console.log(-' + ee + ' exists');
}else {
console.log(-' + ee +' does not exist');
}
/I available(f, v)
if (port.available('LineSource', ee)) {
console.log(-' + ee +'is available');
}else{
console.log(-' + ee +'is not available");
}
}

/I selectors(f)
console.log('- LineSource feature is selected by',
port.selectors('LineSource'));

/] attributes()

console.log('- attributes()");

var attrs = port.attributes();

for (var nin attrs) {
console.log(' -'+n+""+ attrs[n]);

}

/] attributes(f)

console.log('- attributes(\'LineFormat\")');

var attrs = port.attributes('LineFormat');

for (var nin attrs) {
console.log(' -'+n+""+ attrs[n]);

}

/] attributes(f)

var fmt = port.get('LineFormat');

console.log(*- attributes(\'LineFormat\', \" + fmt + \')");

var attrs = port.attributes('LineFormat', fmt);

for (var nin attrs) {
console.log(' -'+n+""+ attrs[n]);

}

/ optional suffixes to integer or float feature names

if (port.available('DividerToolSelector') &&
port.available('DividerToolSelector', 'DIV1")) {
var feature = 'DividerToolDivisionFactor[DIV1]’;
var suffixes = [.Min', .Max', ".Inc’, ".Value';
console.log('- Accessing ' + suffixes + ' of ' + feature);
for (var suffix of suffixes) {

console.log(' -'+ suffix +": ' + port.get(feature + suffix));

}

eGrabber Programming eGrabber KY hiieg vision

}
var remotePort = grabbers[0].RemotePort;
if (remotePort) {
/I getReg(f, len)
/I setReg(f,data)
if (remotePort.available('LUTValueAll')) {
/] get register length
var len = remotePort.get('LUTValueAll.Length');
/I get first 8 bytes
if (len >=8) {
var data = remotePort.getReg('LUTValueAll', 8);
for (varix in data) {
console.log(' - LUTValueAll[' + ix +']: ' + data.charCodeAt(ix));
}
/I write data
/I remotePort.setReg('LUTValueAll', data);
}
}
}
}

/I Camera ports (RemotePort) also have the following functions:
/I brRead(addr) | read bootstrap register (32-bit big endian)
/I brWrite(addr,v) | write value to bootstrap register (32-bit big endian)

if (grabbers.length) {
var port = grabbers[0].RemotePort;
if (port) {
console.log('Playing with', port.tag);
var brStandard = 0x00000000;
var standard = port.brRead(brStandard);
console.log('Bootstrap register "Standard" is ' + standard);
}
}

doc/modulel.js

/I This file describes the special 'module’ variable of Euresys GenApi Script.
/It can be executed by running 'gentl script egrabber://doc/module1.js". It
/l'is also dynamically loaded by the egrabber://doc/builtins.js script.

/I'module' is a special per-module variable. It cannot be declared with var.
/I It always exists, and contains a few items:

console.log('Started execution of " + module.filename +");
console.log('This script is located in directory " + module.curdir +"');

/I Modules can export values via module.exports (which is initialized as an
/I empty object):
module.exports = { description: 'Example of Euresys GenApi Script module'
, plus2: function(x) {
return x + 2;
}
, hello: function() {
console.log('Hello from ' + module.filename);
}
h

console.log('module.exports contains: ');
for (var e in module.exports) {
console.log(-'+e +' (' + typeof module.exports[e] +')');

}

console.log('Completed execution of ' + module.filename);

eGrabber Programming eGrabber AY niied vision

eGrabber Programming eGrabber AY niied vision

(. Euresys GenApi Extensions

The Euresys GenApi module provides useful extensions exposed as virtual GenApi features
accessible with two different syntaxes:

e @-commands: @-prefixed features, e.g. @help
e properties: .<property>-suffixed features, e.g. Width.Max

Those virtual GenApi features are only available in modules opened with the Euresys GenApi
implementation. They extend the set of features exposed by the camera description file (a.k.a.
the “XML” file).

Those extensions are useful in applications to build advanced queries on remote device (or
GenTL module) features or to configure the behavior of the Euresys GenApi implementation.
The following sections document the available commands and properties.

Learn and experiment

The command-line gentl tool provides an environment to experiment with and learn about the
Euresys @-commands. This environment is available with the tool mode genapi.

*

You can quickly enter the mode by executing gentl genapi at the command prompt; this will
open the remote device associated to the first GenTL device of the first GenTL interface of the
default GenTL producer.

The environment is now waiting for user commands to execute. You can obtain some help by
entering the command help:

eGrabber Programming eGrabber AY niieg vision

Let’s focus on the command get, which gets the value of a given feature. For example, to query
the remote device feature Width, we can issue the command get Width:

Please note this environment offers other useful commands (set, dump, source-:); we encourage
you to take some time to discover and experiment them as they are useful when
troubleshooting camera setup or when prototyping some queries/commands that will
ultimately be coded in an eGrabber-based application.

The gentl genapi command prompt can auto-complete or show completion options of feature
names when pressing the Tab key. For example, it’s possible to type get Wid and press the Tab
key--- either there is no other feature starting with Wid and the full feature name Width is
completed, or the available options are printed to the console. (The completion only applies to
GenApi features, so the name of GenApi nodes which don’t belong to categories referenced from
the Root category are not auto-completed.)

Euresys GenApi @-commands

The Euresys GenApi environment provides a description of the available @-commands with the
virtual feature @help. As most @-commands, this virtual feature implements the GenApi IString
interface therefore it acts a GenApi string feature and its value can be queried from the gentl
genapi command prompt by running the command get @help:

remote> get @help

Special @-commands:
@xml current GenApi XML file
@attributes list attributes of GenApi document
@features [C] list features [of category C]
@!features [C] list available features [of category C]
@categories [C] list categories [of category C]
@!categories [C] list available categories [of category C]
@eeE list enum entries of enumeration E
@'ee E list available enum entries of enumeration E
@interfaces F list interfaces of F
@selected F list nodes selected by F
@selectors F list selectors of F
@eventnodes ID list nodes with specified eventID
@available F [EE] True' if F [or enum entry EE of F] is available, 'False' otherwise
@readable F 'True' if F is readable, 'False' otherwise
@writeable F '"True' if F is writeable, 'False' otherwise
@implemented F "True' if F is implemented, 'False' otherwise
@command F 'True' if F is a command, 'False' otherwise
@done F '"True' if the command F is done, 'False' otherwise
@source F the XML source of F
@info F ELEM the XML element ELEM of F

eGrabber Programming eGrabber

KY niied vision

@eeinfo F E ELEM the XML element ELEM of entry E of F
@config current config values

@declare(integer) NAME declare a virtual user feature of type Integer
@declare(float) NAME declare a virtual user feature of type Float
@declare(string) NAME declare a virtual user feature of type String

@undeclare NAME undeclare (delete) a virtual user feature
@declared list virtual user features

@poll invalidate and report features with expired polling time
@pollable list features with a defined polling time

@show F... show features

@help [TOPIC] this general help text or a TOPIC specific help

Additional help topics: properties, selectors, bootstrap, fileaccess

Filtering results of @features and @ee commands:

=" RE only keep results matching (PERL) regular expression RE

=? GLOB only keep results matching glob pattern GLOB
Glob patterns only match whole-words. When using regular expression patterns,
use the caret (*) and dollar ($) symbols to match whole-words.

Examples:
@features
@features =? Pay[LIJoadSize
@features =~ *(CxpLinkConfiguration|LinkConfig)$
@ee PixelFormat
@ee TriggerSource =? CXP*
@ee PixelFormat =~ Mono.*

remote> get @help properties
The properties that can be queried depend on the node interfaces
The syntaxis F.P
where F is the feature name
P is one of the following properties:

Min: minimum value of the number or the enumeration

Max: maximum value of the number or the enumeration

Inc: increment of the number or the enumeration (not always available)

Done: command completion status - is the command done (idle) or is it still running
Address: register address

Length: register length in bytes

ValueDisplayName: enumeration entry display name (or the actual entry name if not defined)
ValueToolTip: enumeration entry tooltip text (or an empty string if not defined)
Representation: representation of the number (hint about how to display the value)
DisplayNotation: notation of the float number (how to display the floating point value)
DisplayPrecision: precision of the float number (total number of digits)

Unit: unit of the number (if defined)

Features: features of the category

Entry.<name>: numerical value of the enumeration entry with the given <name>

Examples:
Width.Min the minimum value of Width
PixelFormat.Entry.Mono8 the numerical value of the PixelFormat entry Mono8

remote> get @help selectors
Selectors of a feature can be automatically set/reset when using the
Euresys specific syntax F[V] (or its long version F[S=V])
where F is the name of the feature to access
S is the name of the selector (i.e. F is selected by S)
V is the value of the selector to use

This syntax takes care of setting (restoring) selector values prior to
(after) reading or writing to a feature, in an atomic-like transaction.

Notes:

eGrabber Programming eGrabber AY niied vision

(1) the short version can be used when S is the only selector of F
(2) if a feature has more than one selector, the selector/value pairs
are separated by a comma (e.g. F[S1=V1,S2=V2])

Examples:
InterfacelD[0]
LineStatus[lIN11]

remote> get @help bootstrap

Bootstrap register helper features are available as virtual features
They are only available on remote device modules

The TLType of the port is used to determine the applicable register set

@braddr: bootstrap register selector address
@brname: name of bootstrap register at address @braddr
@brrepr: representation of current register value at @braddr

Examples: (on a CXP remote device port)
@brname[0x0000] =>"Standard"
@brrepr[0x0000] =>"0Oxc0a79ae5 <CoaXPress>"
@brname[0x2000] => "DeviceVendorName"
@brname[0x4014] =>"ConnectionConfig"
@brrepr{0x4014] =>"0x00040048 <4 connections, 6.250 Gbps (CXP-6)>"

remote> get @help fileaccess
File Access helper features are available as virtual features
They provide a simple interface over the FileAccessControl SFNC features

@filectl: a command whose action is selected by @filectlsel
and performed on the file selected by FileSelector

@filectl[OpenRead]: opens the file in Read mode
@filectl[OpenWrite]: opens the file in Write mode
@filectl[OpenReadWrite]: opens the file in ReadWrite mode
@filectl[Close]: closes the file

@filectl[Delete]: deletes the file

@file: a register exposing the whole file contents or the
contents starting at the offset defined by @fileoffset,
as a contiguous register for reading/writing

Examples:
set FileSelector File1l => selects the file to work with
execute @filect|[OpenRead] => opens the file for reading
get @file[0].Length => returns the file size

an application can read from or write to the file using the
register API on the node "@file[0]" (optionally with an offset)

Below are a few concrete examples you can try in the gentl genapi command prompt or in
eGrabber Studio’s Terminal.

Checking availability

remote> get @available PixelFormat

True

remote> get @available PixelFormat Mono8
True

The first command checks whether the feature PixelFormat is available (i.e. whether it’s readable
and/or writable) while the second command checks whether the entry Mono8 of the
enumeration PixelFormat is available.

eGrabber Programming eGrabber AY niied vision

Getting XML code

The complete XML document associated with the current GenApi context can be obtained by
getting the virtual feature @xml and the XML snippet of a specific GenApi node or feature can be
obtained with the virtual feature @source:

remote> get @source DeviceModelName

<StringReg Name="DeviceModelName" NameSpace="Standard">
<ToolTip>Device Model Name</ToolTip>

<Description>Device Model Name.</Description>
<DisplayName>Device Model Name</DisplayName>
<Address>0x2020</Address>

<Length>32</Length>

<AccessMode>RO</AccessMode>

<pPort>Device</pPort>

</StringReg>

GenApi module configuration

The GenApi module configuration can be displayed with the command get @config:

remote> get @config

@hexadecimal = False (bool)
@rollbackSelectors = True (bool)
@portCache = True (bool)
@checkRange = True (bool)
@checkRangeOnRead = False (bool)
@useRepresentation = True (bool)
@setTLParamsLocked = True (bool)
@checkFloatTolntOverflow = True (bool)
@checkError = True (bool)

Each configuration option can be individually read or modified.

Configuration name Configuration description Default value
hexadecimal default integer representation () False
rollbackSelectors set selector values back to original value (2 True
portCache enable/disable the cache of registers (3) True
checkRange enable/disable number range checking when writing) True
checkRangeOnRead g)nable/disable number range checking when reading s
useRepresentation enable/disable use of node representation © True
setTLParamsLocked set TLParamsLocked automatically or not) True
checkFloatToIntOverflow enable/disable overflow checking (7) True
checkError enable/disable <pError> element handling (@ True
Notes:

e (1) This flag is ignored unless @useRepresentation is False, cf. (5).

eGrabber Programming eGrabber AY niieg vision

e (2) When using the Euresys selector syntax, the selector values are restored by default; this
behavior can be disabled by setting @rollbackSelectors to False.

The selector syntax is a compact Euresys specific syntax that takes care of setting
(restoring) selector values prior to (after) reading or writing to a feature, in an atomic-like
transaction. For example on a Coaxlink Card, to check the LineStatus of the first isolated
input of the first I/O set (IIN11) on the Interface module, we need to first set the
LineSelector feature to the physical I/0 line we want to query (i.e. IIN11) before reading
the LineStatus feature:if> set LineSelector IIN11 if> get LineStatus FalseWith the Euresys
selector syntax, we can combine those operation in one query:if> get LineStatus[IIN11]
FalseThis command will determine the selector feature associated to the LineStatus i.e.
LineSelector, backup the current selector value, set the new selector value 1IN11, get the
value of the feature LineStatus and finally restore the selector to its original value. Those
operations are executed as one transaction, no concurrent thread can change the
LineSelector in between.

e (3) The GenApi register mechanism can be completely disabled when setting @portCache to
Flase; please note that disabling the cache may result in very poor performance of the
GenApi feature access.

e (4) GenApi integer or float nodes have minimal and maximal values that determine a range
and may also have an increment value. Those elements impose constraints on the values of
a feature:

when @checkRange is True, before writing a value to a feature, the value must satisfy the
constraints or the “set” operation fails;

when @checkRangeOnRead is True, the current value of feature is validated before it’s
returned to the user or the “get” operation fails.

e (5) GenApi integer or float nodes may have a <Representation> element that gives a hint
about how to display the value:

when @useRepresentation is True, the node representation is used (or its default
representation when omitted in the XML);

when @useRepresentation is False, the node representation is ignored and integer values
are displayed with the decimal (hexadecimal) notation if @hexadecimal is False (True).

e (6) When the standard feature TLParamsLocked is available on the remote device, it is
automatically set to 1 prior to executing the command AcquisitionStart and it is automatically
reset to 0 after executing the command AcquisitionStop; this behavior can be disabled by
setting @setTLParamsLocked to False.

e (7) When the GenApi runtime needs to convert the value of a float node into an integer value
(signed 64-bit integer), there are two possibilities: either the rounded value can fit in the 64-
bit integer range, or it cannot fit. The latter is known as overflow and
@checkFloatTolntOverflow controls the behavior of the GenApi runtime in this case:

when @checkFloatTolntOverflow is True, a conversion overflow error is raised;

when @checkFloatTolntOverflow is False, converted values are “saturated” i.e. they are
limited to the 64-bit integer range.

e (8) GenApi nodes can have a <pError> element referencing an enumeration node; the

enumeration node must have one entry with the integer value 0 (indicating no error) and
other entries defining specific errors; after setting the value of a node, the GenApi runtime
checks the enumeration integer value and raises an error message based on the
corresponding entry <DisplayName> (or ToolTip) element if it’s not 0; this behavior can be
disabled by setting @checkError to False.

eGrabber Programming eGrabber AY niieg vision

Virtual features

In addition to the @-commands listed earlier, the GenApi module handles two additional kinds
of virtual features: user features and built-in features. They are further decribed in the following
sections.

Virtual user feature

The Euresys GenApi module supports the creation of virtual user features that act as GenApi
floating nodes (i.e. not bound to any register); those virtual user features can be used in "
Euresys GenApi scripts" on page 29 to maintain or share data between script runs performed on
the same GenApi contexts:

e To create a virtual user feature: @declare(integer), @declare(float), @declare(string)
e To remove a virtual user feature: @undeclare

e To access (set/get) a virtual user feature, prefix the user feature name with a $ and use it as a
regular floating node

Examples:

remote> set @declare(integer) Mylnteger
remote> get $MylInteger

0

remote> set $MylInteger 10

remote> get $Mylnteger

10

remote> set @undeclare MylInteger
remote> get $MyInteger

not found ($MylInteger)

Built-in Virtual features

The built-in features are helper GenApi features that can be used in applications or in " Euresys
GenApi scripts" on page 29.

Bootstrap register helpers

On a remote device module, the following virtual features are present:

e @braddr: an integer node representing a bootstrap register address, acting as a selector for
@brname and @brrepr;

e @brname: a read-only string node (selected by @braddr) giving the name of a bootstrap
register

e @brrepr: a read-only string node (selected by @braddr) giving a representation of the
current value of a bootstrap register; the representation tries and decode bitfields when
applicable

For example, with a CoaXPress camera:

remote> get @brname[0x0000]
Standard
remote> get @brrepr[0x0000]

eGrabber Programming eGrabber AY niieg vision

Oxc0a79ae5 <CoaXPress>

remote> get @brname[0x2000]
DeviceVendorName

remote> get @brname[0x4014]

ConnectionConfig

remote> get @brrepr[0x4014]

0x00040048 <4 connections, 6.250 Gbps (CXP-6)>
remote>

Note: depending on the remote device transport layer type, the helpers handle CoaXPress or
GigE Vision bootstrap registers.

FileAccessControl helpers

The SFNC defines a category FileAccessControl containing a set of features providing the
building blocks to access files in a device. Those features provide a low-level API that is not
meant to be used directly, please refer to the “File Access Control” section of the SEFNC
specification for details.

The Euresys GenApi runtime uses the FileAccessControl features to build a higher-level API as
virtual features; the standard feature FileSelector (of the category FileAccessControl) is used to
select the file to use.

o (@filectlsel: an enumertation node, acting as a selector for @filectl; possible values are
OpenRead, OpenWrite, OpenReadWrite, Close, and Delete

e @filectl: a command node for executing or checking the execution status of the action
selected by @filectlsel on a file selected by FileSelector

command @filectl[OpenRead]: opens the file selected by FileSelector in Read mode
e command @filectl[OpenWrite]: opens the file selected by FileSelector in Write mode

e command @filectl[OpenReadWrite]: opens the file selected by FileSelector in ReadWrite
mode

e command @filectl[Close]: closes the file selected by FileSelector
e command @filectl[Delete]: deletes the file selected by FileSelector

o (@fileoffset: an integer node representing an offset in the register node @file, acting as a
selector for @file

o (@file: a register node exposing the whole file selected by FileSelector as a contiguous
register for reading/writing; the selector @fileoffset can be used to access a region of the
contents starting at the given offset (e.g. @file[0x100]) (1)

o register @file: exposes the whole file (unless @fileoffset is not 0);

e register @file[0x100]: exposes the file contents starting at offset 0x100 until the end of the
file (2)

Notes:

eGrabber Programming eGrabber AY niieg vision

e (1)the register node @file is supposed to be used in application using the GenApi register API

e example using an eGrabber g in C++// read "Filel"
contentsg.setString<Euresys::RemoteModule>("FileSelector",
"Filel");g.execute<Euresys::RemoteModule>("@filectl[OpenRead]");int64_t filelSize =
g.getinteger<Euresys::RemoteModule>("@file[0].Length");std::vector<uint8_t> filel(static_
cast<size_t>(file1Size));g.getRegister<Euresys::RemoteModule>("@file[0]", &file1[0],
filel.size());// "Filel" contents is now in vector filel

e (2)the register length of @file depends on the @fileoffset value, @file[0x100].Length equals
@file[0].Length - 0x100

Euresys feature properties

Depending on the GenApi interfaces of a node (Integer, Float, String, Register--+), it’s possible to
query different properties of a node. For example, it’s possible to query the minimum and
maximum values of the Width feature as follows:

remote> get Width.Min
32

remote> get Width.Max
2592

The table below shows the available properties depending on the GenApi interfaces of a node.
The Euresys GenApi implementation keeps on improving therefore the table below might not
include the latest properties; please query the custom feature @help properties to get complete

list.

Property name

Property description

Min

minimum value of the number or the enumeration

Max maximum value of the number or the enumeration

Inc increment of the number or the enumeration (not always available)

Done command completion status - is the command done (idle) or is it still
running

Address register address

Length register length in bytes

ValueDisplayName

enumeration entry display name (or the actual entry name if not defined)

ValueToolTip enumeration entry tooltip text (or an empty string if not defined)
Representation representation of the number (hint about how to display the value)
DisplayNotation notation of the float number (how to display the floating point value)

DisplayPrecision

precision of the float number (total number of digits)

Unit

unit of the number (if defined)

Entry.<name>

numerical value of the enumeration entry with the given <name>

Examples:

e Width.Min: the minimum value of Width

e PixelFormat.Entry.Mono8: the numerical value of the PixelFormat entry Mono8

eGrabber Programming eGrabber

”Allied Vision
S TRH Vision brand

8. eGrabber for MultiCam users

Concepts

MultiCam eGrabber

Board Interface

Channel Device + Data stream
Surface Buffer

Surface cluster (MC_Cluster)

Buffers announced to the data stream

Remote device (camera)

MultiCam parameters

GenApi " GenApi" on page 6

GenApi " GenApi" on page 6

CAM file

Euresys GenApi script

CallbackOnDemand

Callback functions

CallbackSingleThread

CallbackMultiThread

Initialization

if (status 1= MC_OK) {

:

MCSTATUS status = McOpenDriver(NULL);

Euresys::EGenTL gentl;

Channel creation

MCSTATUS status;
MCHANDLE channel;

status = McCreate(MC_CHANNEL, &handle);

if (status != MC_OK) {

:

status = McSetParamint(channel, MC_Driverindex, CARD_INDEX);

if (status != MC_OK) {

:

status = McSetParamint(channel, MC_Connector, CONNECTOR);

if (status != MC_OK) {

:

Euresys::EGrabber<> grabber(gentl, CARD_INDEX, DEVICE_INDEX);

eGrabber Programming eGrabber AY niied vision

Surface creation (automatic)

status = McSetParamint(channel, MC_SurfaceCount, BUFFER_COUNT);
if (status != MC_OK) {

:

grabber.reallocBuffers(BUFFER_COUNT);

Surface creation (manual)

for (size_ti=0;i < BUFFER_COUNT; ++i) {
MCHANDLE surface;
MCSTATUS status;
void *mem = malloc(BUFFER_SIZE);
if ('mem) {

}
status = McCreate(MC_DEFAULT_SURFACE_HANDLE, &surface);

if (status != MC_OK) {

}
status = McSetParamint(surface, MC_SurfaceSize, BUFFER_SIZE);

if (status != MC_OK) {

:

status = McSetParamPtr(surface, MC_SurfaceAddr, mem);
if (status != MC_OK) {

}
status = McSetParamPtr(surface, MC_SurfaceContext, USER_PTR]i]);

if (status != MC_OK) {

}
status = McSetParamlnst(channel, MC_Cluster + i, surface);
if (status != MC_OK) {

-
}

for (size_ti=0;i < BUFFER_COUNT; ++i) {
void *mem = malloc(BUFFER_SIZE);
if ('mem) {

}
grabber.announceAndQueue(Euresys::UserMemory(mem, BUFFER_SIZE, USER_PTR]i]));

}

Surface cluster reset

MCSTATUS status;

for (size_ti=0;i < BUFFER_COUNT; ++i) {
MCHANDLE surface;
status = McGetParamlnst(channel, MC_Cluster + i, &surface);
if (status = MC_OK) {

}
status = McSetParamint(surface, MC_SurfaceState, MC_SurfaceState FREE);

if (status = MC_OK) {

eGrabber Programming eGrabber

.....

:
}

if (status != MC_OK) {

:

status = McSetParamint(channel, MC_Surfacelndex, 0);

grabber.resetBufferQueue();

Frame grabber configuration

MultiCam

eGrabber

McSetParamStr(H, MC_CamFile, filepath)

grabber.runScript(filepath)

grabber.runScript(script)

McSetParamint(H, id, value) or
McSetParamNmInt(H, name, value)

grabber.setinteger<M>(name, value)

McSetParamFloat(H, id, value) or
McSetParamNmFloat(H, name, value)

grabber.setFloat<M>(name, value)

McSetParamStr(H, id, value) or
McSetParamNmStr(H, name, value)

grabber.setString<M>(name, value)

where H is a MC_HANDLE (the global MC_CONFIGURATION handle, a board handle, or a
channel handle), and M specifies the target module (either SystemModule, InterfaceModule,

DeviceModule, or StreamModule).

Camera configuration

MultiCam eGrabber

- grabber.runScript(filepath)

- grabber.runScript(script)
grabber.setinteger<RemoteModule>(name, value),

- grabber.setFloat<RemoteModule>(name, value), or
grabber.setString<RemoteModule>(name, value)

Script files

; CAM file

ChannelParam1 = Value1;
ChannelParam2 = Value2;

/I Euresys GenApi Script

var grabber = grabbers[0];
grabber.DevicePort.set('DeviceFeature’, Value1);
grabber.DevicePort.set('DeviceFeature?', Value2);

grabber.RemotePort.set('CameraFeatureA’, ValueA);

eGrabber Programming eGrabber AY niied vision

Acquisition start/stop

/I start "live"

McSetParamint(channel, MC_GrabCount, MC_INFINITE);
McSetParamlint(channel, MC_ChannelState, MC_ChannelState_ ACTIVE);
/I stop

McSetParamint(channel, MC_ChannelState, MC_ChannelState_IDLE);

/I grab 10 images

McSetParamint(channel, MC_GrabCount, 10);

McSetParamlInt(channel, MC_ChannelState, MC_ChannelState_ ACTIVE);

/I start "live"
grabber.start();

/I stop
grabber.stop();

/I grab 10 images
grabber.start(10);

Synchronous (blocking) buffer reception

MCSTATUS status;

MCSIGNALINFO info;

/I wait for a surface

status = McWaitSignal(channel, MC_SIG_SURFACE_PROCESSING, timeout, &info);
if (status |= MC_OK) {

}
MCHANDLE surface = info.Signallnfo;
/l process surface

/I make surface available for new images
status = McSetParamint(surface, MC_SurfaceState, MC_SurfaceState_ FREE);
if (status |= MC_OK) {

:

/l wait for a buffer
Buffer buffer = grabber.pop(timeout);
// process buffer

/I make buffer available for new images
buffer.push(grabber);

{

/I wait for a buffer
ScopedBuffer buffer(grabber, timeout);
/I process buffer

/I ScopedBuffer destructor takes care of making buffer available for new images

}

Callbacks

class MyChannel {
public:
MyChannel() {
/ create and configure channel

eGrabber Programming eGrabber AY niieg vision

/I enable "SURFACE_PROCESSING" events

status = McSetParamint(channel, MC_SignalEnable + MC_SIG_SURFACE_PROCESSING,
MC_SignalEnable_ON);

if (status = MC_OK) {

}
/l enable "END_EXPOSURE" events

status = McSetParamint(channel, MC_SignalEnable + MC_SIG_END_EXPOSURE,
MC_SignalEnable_ON);
if (status = MC_OK) {

:

/I register "extern C" callback function
MCSTATUS status = McRegisterCallback(channel, GlobalCallbackFunction, this);
if (status != MC_OK) {

:
}

void onEvent(MCSIGNALINFO *info) {
switch (info->Signal) {
case MC_SIG_SURFACE_PROCESSING:
MCHANDLE surface = info.Signallnfo;
/] process surface

break;
case MC_SIG_END_EXPOSURE:
/' handle "END_EXPOSURE" event

break;

}
}

private:
MCHANDLE channel;
5

void MCAPI GlobalCallbackFunction(MCSIGNALINFO *info) {
if (info && info->Context) {
MyGrabber *grabber = (MyGrabber *)info->Context;
grabber->onEvent(info);
}
5

class MyGrabber : public EGrabber<CallbackSingleThread> {
public:
MyGrabber(EGenTL &gentl) : EGrabber<CallbackSingleThread>(gentl) {
/I configure grabber

/I enable "NewBuffer" events
enableEvent<NewBufferData>();
/I enable "Cic" events
enableEvent<CicData>();

}

private:
virtual void onNewBufferEvent(const NewBufferData& data) {
ScopedBuffer buffer(*this, data);
/I process buffer

}
virtual void onCicEvent(const CicData &data) {
/I handle "Cic" event

eGrabber Programming eGrabber AY niied vision

Synchronous (blocking) event handling

class MyChannel {
public:
MyChannel() {
// create and configure channel

/l enable "END_EXPOSURE" events

status = McSetParamint(channel, MC_SignalEnable + MC_SIG_END_EXPOSURE,
MC_SignalEnable_ON);

if (status != MC_OK) {

:
}

void waitForEvent(uint32_t timeout) {
// wait for an event

MCSTATUS status = McWaitSignal(channel, MC_SIG_END_EXPOSURE, timeout, &info);
if (status != MC_OK) {

}
/I handle "END_EXPOSURE" event

:

private:

class MyGrabber : public EGrabber<CallbackOnDemand> {
public:
MyGrabber(EGenTL &gentl) : EGrabber<CallbackOnDemand>(gentl) {
/I configure grabber

/I enable "Cic" events
enableEvent<CicData>();

}

void waitForEvent(uint64_t timeout) {
/[wait for an event
processEvent<CicData>(timeout);

}

private:
/I onCicEvent is called by processEvent when a "Cic" event occurs
virtual void onCicEvent(const CicData &data) {
/I handle "Cic" event

eGrabber Programming eGrabber AY niied vision

.....

9. NET assembly

eGrabber can be used in .NET languages (C#, VB.NET, etc.) via two .NET assemblies named
EGrabber.NETFramework.dll and EGrabber.NET.dll.

e EGrabber.NETFramework.dll assembly only works on Windows and requires .NETFramework.

e EGrabber.NET.dll assembly is cross-platform and works with .NET previously called .NET
Core.

The assembly used at runtime must be the same as the assembly used at compile-time.

A first example

This example creates a grabber and displays basic information about the interface, device, and
remote device modules it contains. This is the C# version of " eGrabber" on page 12:

using System;
using Euresys.EGrabber;

namespace FirstExample {

class ExampleShowInfo {

constint CARD_IX =0;
constint DEVICE_IX =0;

static void ShowlInfo() {

using (var gentl = new EGenTL()) { 11
using (var grabber = new EGrabber(gentl, CARD_IX, DEVICE_IX)) { 112
string card = grabber.Interface.Get<string>("InterfacelD"); 113
string dev = grabber.Device.Get<string>("DevicelD"); 114
ulong width = grabber.Remote.Get<ulong>("Width"); 115
ulong height = grabber.Remote.Get<ulong>("Height"); /15

System.Console.WriteLine("Interface: {0}", card);
System.Console.WriteLine("Device: ~ {0}", dev);
System.Console.WriteLine("Resolution: {0}x{1}", width, height);
}
}
}

static void Main() {
try { 116
Showlnfo();
} catch (System.Exception e) { 116
System.Console.WriteLine("error: {0}", e.Message);
}
}
}
}

1. Create an EGenTL object. This will locate, open, and initialize the GenTL producer (e.g.,
coaxlink.cti).

2. Create an EGrabber object. The constructor needs the gentl object we’ve just created. It also
takes as optional arguments the indices of the interface and device to use.

eGrabber Programming eGrabber AY niied vision

3. Use " GenApi" on page 6 to find out the ID of the Coaxlink card. We want an answer from the
" Interface module" on page 8, so the Get is done on grabber.Interface. Notice the <string> to
indicate that we want to query the GenlCam IString interface of the feature and we want to
get back a string value.

4. Similarly, find out the ID of the device. This time, we use grabber.Device to target the " Device
module" on page 9.

5. Finally, read the camera resolution. This time, we use grabber.Remote since the values must
be retrieved from the camera. Notice the <ulong> to indicate that we want to query the
GenlCam lInteger interface of the feature and we want to get back a ulong value.

6. eGrabber uses exceptions to report errors, so we wrap our code inside a try ... catch block.

Example of program output:

Interface: PC1633 - Coaxlink Quad G3 (2-camera) - KQG00014
Device: Device0
Resolution: 4096x4096

Differences between C++ and .NET eGrabber

eGrabber classes

C++ NET
EGrabber<> EGrabber
EGrabber<CallbackOnDemand> EGrabber

EGrabber<CallbackSingleThread> -
EGrabber<CallbackMultiThread> -
Buffer Buffer

ScopedBuffer ScopedBuffer used in a using-statement

EGrabber methods

e In the C++ APIl, method names are written in camelCase. In C#, method names are written in
CamelCase. For example, the C++ reallocBuffers becomes ReallocBuffers in C#.

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/using

eGrabber Programming eGrabber AY niied vision

e Other differences:C++.NETgetInfo<sMODULE,TYPE>(cmd)Module.GetInfo<TYPE>
(cmd)getinteger<MODULE>(f)Module.Get<long>(f), Module.Get<int>(f), ----Module.Get<bool>
(f)getFloat<MODULE>(f)Module.Get<double>(f), Module.Get<float>(f)getString<MODULE>
(f)Module.Get<string>(f)getStringList<MODULE>(f)Module.Get<string[]>
(f)setinteger<MODULE>(f, v)Module.Set<long>(f, v), Module.Set<int>(f, v), ----
Module.Set<bool>(f, v)setFloat<MODULE>(f, v)Module.Set<double>(f, v), Module.Set<float>(f,
v)setString<MODULE>(f, v)Module.Set<string>(f, v)execute<MODULE>(f)Module.Execute
(flenableEvent<EVENT_DATA>()EnableEvent(EventType.EVENT_DATA)disableEvent<EVENT_
DATA>()DisableEvent(EventType.EVENT_DATA)where

e MODULE can be replaced by SystemModule, InterfaceModule, DeviceModule,
StreamModule, or RemoteModule;

e Module can be replaced by System, Interface, Device, Stream, or Remote;

e EVENT_DATA can be replaced by NewBufferData, DataStreamData, loToolboxData,
CicData, CxplInterfaceData, DeviceErrorData, CxpDeviceData, or RemoteDeviceData.

Callbacks

In .NET, callbacks are defined as methods with two arguments, the grabber and the actual event
data:

grabber.RegisterEventCallback<NewBufferData>(OnNewBufferData);
grabber.RegisterEventCallback<DataStreamData>(OnDataStreamData);
grabber.RegisterEventCallback<loToolboxData>(OnloToolboxData);
grabber.RegisterEventCallback<CicData>(OnCicData);
grabber.RegisterEventCallback<CxplnterfaceData>(OnCxplnterfaceData);
grabber.RegisterEventCallback<DeviceErrorData>(OnDeviceErrorData);
grabber.RegisterEventCallback<CxpDeviceData>(OnCxpDeviceData);
grabber.RegisterEventCallback<RemoteDeviceData>(OnRemoteDeviceData);

A complete example is given in the next section.

Processing events using callbacks

This program displays basic information about CIC events generated by a grabber:

using System;
using Euresys.EGrabber;

namespace Callbacks {
class CallbackExample {
static void ShowEvents(EGrabber grabber) {
grabber.RunScript("config.js"); /11

grabber.RegisterEventCallback<CicData>(OnCicData); /12
grabber.EnableEvent(EventType.CicData); 115

grabber.ReallocBuffers(3); 116
grabber.Start(); 116
while (true) { 116
grabber.ProcessEvent(EventType.Any); 116
}
}

static void OnCicData(EGrabber grabber, CicData data) { 113
System.Console.WriteLine("Timestamp: {0} us, {1}", 114
data.Timestamp, data.Numld);

eGrabber Programming eGrabber AY niied vision

}

static void Main() {
try {
using (var gentl = new EGenTL()) {
using (var grabber = new EGrabber(gentl)) {
ShowEvents(grabber);
}
}
} catch (System.Exception e) {
System.Console.WriteLine("error: {0}", e.Message);
}
}
}
}

=

Run a config.js script which should:
o properly configure the camera and frame grabber;

o enable notifications for CIC events.
2. Register the callback function for handling the CIC events.

3. The CIC event callback has two arguments: the grabber that got the event, and the actual
event data.

4. In the body of the callback function, simply display basic information about the event.
5. Enable CicData events on the grabber.

6. Start the grabber and enter an infinite loop to process any incoming event. CIC events will be
notified in the same thread.

Example of program output:

timestamp: 2790824897 us, EVENT_DATA_NUMID_CIC_CAMERA_TRIGGER_RISING_EDGE
timestamp: 2790824897 us, EVENT_DATA_NUMID_CIC_STROBE_RISING_EDGE

timestamp: 2790824902 us, EVENT_DATA_NUMID_CIC_CXP_TRIGGER_ACK

timestamp: 2790825897 us, EVENT_DATA_NUMID_CIC_STROBE_FALLING_EDGE

timestamp: 2790830397 us, EVENT_DATA_NUMID_CIC_CAMERA_TRIGGER_FALLING_EDGE
timestamp: 2790830401 us, EVENT_DATA_NUMID_CIC_CXP_TRIGGER_ACK

timestamp: 2790842190 us, EVENT_DATA_NUMID_CIC_ALLOW_NEXT_CYCLE

timestamp: 2790842190 us, EVENT_DATA_NUMID_CIC_CAMERA_TRIGGER_RISING_EDGE
timestamp: 2790842191 us, EVENT_DATA_NUMID_CIC_STROBE_RISING_EDGE

timestamp: 2790842195 us, EVENT_DATA_NUMID_CIC_CXP_TRIGGER_ACK

eGrabber Programming eGrabber AY niied vision

10. Python

eGrabber can also be used in Python.

Installation

The Python bindings for eGrabber are provided in a Pyhon wheel installation package (a .whl
file) located in the python subdirectory of the eGrabber installation directory'. Depending on
your Python setup, installation can be as easy as:

python -m pip install <PATH_TO_EGRABBER_WHL>

A first example

This example creates a grabber and displays basic information about the interface, device, and
remote device modules it contains. This is the Python version of " eGrabber" on page 12:

from egrabber import * #1

card_ix=0
device_ix=0

def showlInfo():
gentl = EGenTL() #2
grabber = EGrabber(gentl, card_ix, device_ix) #3

card = grabber.interface.get('InterfacelD’) #4

dev = grabber.device.get('DevicelD') #5
width = grabber.remote.get('Width') #6
height = grabber.remote.get('Height') #6

print('Interface: %s' % card)
print('Device: %s' % dev)
print('Resolution: %ix%i' % (width, height))

try: #7
showlnfo()

except Exception as e: #7
print(‘error: %s' % e)

1. Import the egrabber module.

2. Create an EGenTL object. This will locate, open, and initialize the GenTL producer (e.g.,
coaxlink.cti).

3. Create an EGrabber object. The constructor needs the gentl object created in step 2. It also
takes as optional arguments the indices of the interface and device to use.

1 0n Windows, eGrabber is typically installed in C:\Program Files\Euresys\eGrabber.

On Linux, eGrabber is installed in /opt/euresys/egrabber.

On macOS, eGrabber is installed in /usr/local/opt/euresys/egrabber.

eGrabber Programming eGrabber AY niied vision

T1.

Use " GenApi" on page 6 to find out the ID of the Coaxlink card. We want an answer from the
" Interface module" on page 8, so the get is done on grabber.interface.

Similarly, find out the ID of the device. This time, we use grabber.device to target the " Device
module" on page 9.

Finally, read the camera resolution. This time, we use grabber.remote since the values must
be retrieved from the camera.

egrabber uses exceptions to report errors, so we wrap our code inside a try: ... except: ... block.

Example of program output:

Interface: PC1633 - Coaxlink Quad G3 (2-camera) - KQG00014
Device: Device0
Resolution: 4096x4096

Differences between C++ and Python eGrabber

eGrabber classes

C++ Python
EGrabber<> EGrabber
EGrabber<CallbackOnDemand> EGrabber

EGrabber<CallbackSingleThread> -

EGrabber<CallbackMultiThread> -

Buffer Buffer

ScopedBuffer Buffer used in a with-block

EGrabber methods

In the C++ API, method names are written in camelCase. In Python, method names are
written in lower_case. For example, the C++ reallocBuffers becomes realloc_buffers in Python.

Other differences:C++Pythongetinteger<MODULE>(f)module.get(f,
dtype=int)getFloat<MODULE>(f)module.get(f, dtype=float)getString<MODULE>(f)module.get
(f, dtype=str)getStringList<MODULE>(f)module.get(f, dtype=list)-module.get(f, dtype=bool)-
module.get(f)setinteger<MODULE>(f, v)module.set(f, v)setFloat<MODULE>(f, v)module.set(f,
v)setString<MODULE>(f, v)module.set(f, v)execute<MODULE>(f)module.execute(f)where
MODULE can be replaced by SystemModule, InterfaceModule, DeviceModule, StreamModule, or
RemoteModule; and module can be replaced by system, interface, device, stream, or remote.

https://www.python.org/dev/peps/pep-0343

eGrabber Programming eGrabber AY niied vision

11. Sample programs

Sample programs for eGrabber are provided in a dedicated package named egrabber-<OS>-
sample-programs-<YY.MM.RE.BU>.<EXT> where <OS> is the operating system (linux, macos, or
win) and <YY.MM.RE.BU> is the version number of the package.

These sample programs will use Coaxlink by default. To use them with Grablink:

e either define EURESYS_DEFAULT_GENTL_PRODUCER=grablink in your environment;
e or pass Grablink() to the EGenTL constructor.

Similarly, to use Gigelink:

e either define EURESYS_DEFAULT_GENTL_PRODUCER=gigelink in your environment;
e or pass Gigelink() to the EGenTL constructor.

And for Playlink (which requires a license*):

e either define EURESYS_DEFAULT_GENTL_PRODUCER=playlink in your environment;

e or pass Playlink() to the EGenTL constructor.

Sample program Description Language OS
cop/earabber-snippets Collection of " eGrabber C++ code Cit Windows,
Pp/eg PP snippets" on page 64 for eGrabber Linux, macOS

Win32 application showing image

cpp/display-latest-buffer acquisition and dISplay’ c!lscardmg C++ Windows
buffers when processing is slower
than image acquisition

cpplegrabber-mfc MFC application showing image Cit Windows

acquisition and display

SDL2 application showing image
cpp/sdi2/display-all-buffers acquisition and display of all C++
acquired buffers

Windows,
Linux, macOS

SDL2 application showing image
acquisition and display, discarding

cpp/sdi2/display-latest-buffer buffers when processing is slower ~ C++
than image acquisition (using
OnDemand callback model)

Windows,
Linux, macOS

SDL2 application showing image
acquisition and display based on

. . display-latest-buffer, suited to Windows,
cpp/sdi2/display-latest-multipart multi-part sources such as GenDC, Cre Linux, macOS
discarding buffers when processing
is slower
_ SDL2 application showing image Windows,
cpp/sdi2/display-latest-buffer-mt acquisition and display, discarding C++ Linux, macOS

1 PC4401 eGrabber Recorder and Playlink or PC4401-EV eGrabber Recorder and Playlink (30-day evaluation).

eGrabber Programming eGrabber

Sample program

Description Language

”Allied Vision

0S

buffers when processing is slower
than image acquisition (using
MultiThread callback model)

cpp/sdi2/egrabber-cuda-sdi2

SDL2 application showing image
acquisition with eGrabber and
processing with CUDA (on Nvidia ~ C++
GPU) Supported CUDA versions:

v12.x, v13.x

Windows,
Linux

cpp/amd-direct-gma

OpenGL application showing image
acquisition, direct transfer to AMD C++
GPU memory, and display

Windows

cpp/nvidia-cuda

OpenGL console application
showing image acquisition with
eGrabber and processing with
CUDA (on Nvidia GPU) Supported
CUDA versions: from v8.x up to
v11.5

C++

Windows,
Linux

cpp/ffc-wizard

Console application showing how
to compute coefficients for the C++
Coaxlink FFC (flat-field correction)

Windows,
Linux, macOS

cpp/exif

Collection of "EXIF sample

programs" on page 66 showing

how to use the Coaxlink Quad CXP- C++
12 JPEG and how to embed

metadata in EXIF files

Windows,
Linux, macOS

cpp/grablink-serial-
communication-mfc

Simple application demonstrating
Camera Link serial communication
through the clseregl library on a
Grablink Duo board

C++

Windows

cs/egrabber

Console application showing how
to use eGrabber and callbacks in C#
C#

Windows

cs/grabn

Console application showing image
acquisition

Windows

cs/grabn.NET

.NET console application showing
image acquisition

Windows

cs/display-latest-buffer

Windows Forms application

showing image acquisition and

display, discarding buffers when C#
processing is slower than image
acquisition

Windows

cs/egrabber-wpf

WPF application showing image
acquisition and display

Windows

cs/egrabber-cuda.NET

.NET console application showing
image acquisition with eGrabber
and processing with CUDA (on
Nvidia GPU)

Windows,
Linux

https://en.wikipedia.org/wiki/Exif

eGrabber Programming eGrabber AY niied vision

Sample program Description Language OS

Collection of " Sample programs"
on page 62" eGrabber Recorder C#

cs/*-recorder* N C# Windows
sample programs" on page 67 for
eGrabber Recorder
Simple application demonstrating
cs/grablink-serial- Camera Link serial communication .
- . C# Windows
communication through the clseregl library on a
Grablink Duo board
Collection of " Sample programs"
python/* on page 62" eGrabber Python Python Windows,

sample programs" on page 66 for
eGrabber

Linux, macOS

Collection of " Sample programs"
on page 62" eGrabber Recorder
Python sample programs" on page
67 for eGrabber Recorder

python/*-recorder Python Windows

Collection of extra " Sample
programs" on page 62" eGrabber

Python sample programs" on page Windows,

python/display-all-buffers 66 for eGrabber showing how to Python Linux, macOS
process acquired data with numpy,
opency, Pillow, etc.
Simple application showing image

python/display-latest-buffer acquisition and display, discarding Python Windows,

buffers when processing is slower
than image acquisition

Linux, macOS

Console application showing image

vb/grabn L VB.NET Windows
acquisition
Windows Forms application
showing image acquisition and

vb/display-latest-buffer display, discarding buffers when VB.NET Windows
processing is slower than image
acquisition

Additional files Description Language OS
Python script showing the effect of
the image transfer settings: .

. -) . Windows,

tools/stripeGeometry.py StripeArrangement, StripeHeight, Python Linux. macoOS
StripePitch, StripeOffset, and ’
BlockHeight

LICENSE License text for eGrabber sample All Wlndows,
programs Linux, macOS

eGrabber C++ code snippets

cpp/egrabber contains the following code snippets:

eGrabber Programming eGrabber

Snippet

” Allied Vision

Description

100-grabn

Simple Grab N frames using ScopedBuffer class

101-singleframe

Single frame grabbing using ScopedBuffer class

102-action-grab

Single frame triggered by an action

105-area-scan-grabn

Set image size and Grab N frames (area-scan)

106-line-scan-grabn

Set image size and Grab N frames (line-scan)

110-get-string-list

Basic usage of EGrabber method getStringlList

120-converter

Measure FormatConverter speed

130-using-buffer

Simple Grab N frames using Buffer class

140-genapi-command

Queries on GenApi commands

150-discover

Discover and create eGrabbers or cameras with
EGrabberDiscovery

200-grabn-callbacks

Grab N frames and get DataStream events with callbacks

201-grabn-pop-oneof

Grab N frames and get DataStream events using pop
(OneOf<>)

210-show-all-grabbers

Show available grabbers

211-show-all-grabbers-ro

Show available grabbers (devices are opened with
DEVICE_ACCESS_READONLY)

212-create-all-grabbers

Create available grabbers

220-get-announced-handles

Get info and handles of announced buffers

221-queue-buffer-ranges

Create and use 2 sets of buffers configured differently

230-script-vars

Pass data between native code and Euresys script

231-script-var

Create and use virtual features from native code and
Euresys scripts

240-user-memory

Grab into user allocated buffer

241-multi-part

Grab N multi-part buffers using Buffer class

250-using-lut

Configure and enable the LUT processor

260-recorder-read-write

Write/Read buffers to/from a Recorder container

261-recorder-parameters

Show Recorder parameters

270-multicast-master

Sending packets on multicast group

271-multicast-receiver

Save the image received on the multicast group

300-events-mt-cic

CIC events on EGrabber Multi-Thread Configuration

301-events-st-all

All events on EGrabber Single-Thread Configuration

302-cxp-connector-detection

Show CoaXPress events related to connection and device
discovery

310-high-frame-rate

Grab in high frame rate mode for 10 seconds

311-high-frame-rate

Process images as soon as available in high frame rate
mode for 10 seconds

312-part-timestamps

Show timestamp of each buffer part in HFR mode

320-cl-serial-cli

Command line interface for serial communication with a

eGrabber Programming eGrabber

Snippet

” Allied Vision

Description

Camera Link camera

321-gencp-serial

Simple Grab N frames with a GenCP camera

330-metadata-insertion

Insert buffer and line metadata into a buffer and get
them

340-dma-roi

Grab N frames but store a smaller region in the user
buffers

341-dma-deinterlace

Grab and deinterlace N frames

342-dma-roi-deinterlace

Grab N frames but store a deinterlaced smaller region in
the user buffers

500-grabn-cuda-process

Grab N frames and process them with CUDA operations

Use all available interfaces and devices to grab N frames

501-all-grabbers-cuda-process and process them with CUDA operation

Grab N frames, copy the buffers to the CUDA device and
process them with CUDA operations

Grab N frames in the GPU memory with RDMA and
process them with CUDA operations

502-grabn-cuda-copy-and-process

503-grabn-cuda-rdma-process

Perform specific operations on a callback thread when it

600-thread-start-stop-callbacks starts/stops

Array of (contiguous) buffers on Line-Scan with EGrabber

610-line-scan-array Single-Thread

620-multiple-camera Acquire data from all cameras

650-multistream Acquire data from 4 data streams on the same device

700-memento Generate memento waves

Simulate a busy environment and acquire images,

800-process-latest-buffer discarding some buffers when busy

EXIF sample programs

cpp/exif contains the following samples:

Sample Description

Acquire data from 4 JPEG encoded data streams and
produce EXIF files

100-jpeg-exif

Acquire data from 4 Preview and 4 JPEG encoded data

200-jpeg-preview-exif streams and produce EXIF files with thumbnails

eGrabber Python sample programs

Sample
100-grabn

Description
Simple Grab N using ‘with Buffer’

Python version of the C++ 120-converter eGrabber sample
program

120-converter

130-using-buffer Simple Grab N with manual buffer management

eGrabber Programming eGrabber

Sample

AY niied vision

Description

140-genapi-command

Queries on GenApi commands

150-discover

Discover and create eGrabbers or cameras with
EGrabberDiscovery

200-grabn-callbacks

Grab N frames and get DataStream events with callbacks

201-grabn-pop-oneof

Grab N frames and get DataStream events with pop_one_of

210-show-all-grabbers

Show available grabbers

240-user-memory

Grab into user allocated buffer

300-events-mt

Grab frames for a few seconds and get DataStream events
with callbacks, processing them in a separate thread

310-high-frame-rate

Grab in high frame rate mode for 10 seconds

320-cl-serial-cli

Command line interface for serial communication with a
Camera Link camera

cuda-grab-and-invert

Allocate an eGrabber buffer mapped into the CUDA device
memory and run a kernel to invert its luminance values

cuda-rdma

Allocate eGrabber buffers directly in a CUDA device memory
using eGrabber NvidiaRdmaMemory

display-all-buffers

Image acquisition and display

display-all-buffers-capture-opencv

Acquire and convert frames to RGB8 to produce an avi file
with opencv and numpy

display-all-buffers-numpy-opencv

Create numpy arrays from acquired Mono8 data, transpose
arrays and use opencv to show images

display-all-buffers-tkinter-pillow

Simple tkinter application showing acquired data processed
by a Pillow contour filter

display-latest-buffer

Image acquisition and display. When the acquisition is faster
than the display processing, buffers are discarded

eGrabber Recorder Python sample programs

Sample

Description

260-recorder-read-write

Write/Read buffers to/from a Recorder container

261-recorder-parameters

Show Recorder parameters

262-recorder-export

Export images from the container created by sample260.py
to an MKYV file, and then use opencv to read the MKYV file and
display the images

360-recorder-write-with-callback

Write to a Recorder container using EGrabber callback

eGrabber Recorder C# sample programs

Sample

Description

260-recorder-read-write

Write/Read buffers to/from a Recorder container

261-recorder-parameters

Show Recorder parameters

eGrabber Programming eGrabber AY niied vision

12. GenTL producers configuration

The eGrabber configuration files allow to configure the internal behavior of some
functionalities. There is one configuration file per GenTL producer: coaxlink.ini, grablink.ini,
gigelink.ini and playlink.ini. For Playlink, there is also a file playlink.cfg, which serves to define its
data streams from eGrabber Recorder containers.

The configuration files are located in:

e Windows: %PUBLIC%\Documents\Euresys\eGrabber
(C:\Users\Public\Documents\Euresys\eGrabber)

e Linux: /etc/opt/euresys/egrabber
e macOS: /usr/local/etc/opt/euresys/egrabber

These files follow the INI format of key=value pairs inside a [Section]. Depending on the
producer, different sections and parameters are available.

The values read from the configuration files can be consulted in the System module, under the
ConfigurationFile category.

coaxlink.ini and grablink.ini

e [Genapi]/MathParserMode: Configure the behavior of GenApi SwissKnife parser

e Standard: permissive mode that operates like the GenlCam reference implementation
(left associativity)

e Strict: evaluation of the formulas must be non ambiguous, using parentheses is required
when several logical operators are used at the same level

e Auto: same as Strict

e [System]/InterfaceOrder: Sort the discovered interfaces according to a specific ordering.
Possible values are:

e Ascending: sort interfaces based on the card ID, in ascending order
e Descending: sort interfaces based on the card ID, in descending order
e PciPosition: sort interfaces based on the PCI position value

e PciSlot: sort interfaces based on the slot ID (if available, Windows only, and subject to
drivers and hardware limitations)

e System: do not sort interfaces, use the default ordering obtained during discovery
Notes:

e the card ID is defined as the card full name concatenated with its serial number:
ProductCode - Name (Variant) - SerialNumber

e the PCI position is an internal numeric value calculated from the bus and slot information

eGrabber Programming eGrabber AY niieg vision

Sample coaxlink.ini

[System]
InterfaceOrder=Ascending

[Genapi]
MathParserMode=Auto

gigelink.ini

[Genapi]/MathParserMode:

e Standard: permissive mode that operates like the GenlCam reference implementation
(left associativity)

e Strict: evaluation of the formulas must be non ambiguous, using parentheses is required
when several logical operators are used at the same level

e Auto: same as Standard

[Interface]/CameraSubnet: restrict discovery to cameras whose IPv4 address matches the
given IPv4 subnet, e.g. 192.168.100.0/24 for cameras ranging from 192.168.100.1 to
192.168.100.254.

[Interface]/DiscoveryTimeout: define how long to wait for a discovery reply (value in
milliseconds)

[Interface]/AllowBroadcastAck: devices are allowed to send discovery replies in IPv4
broadcast packets. This helps the discovery of cameras with misconfigured network (y/Y or
n/N)

[Stream]/UseFilterDriver: enable the use of gigelink.sys filter driver for GVSP protocol
processing (y/Y or n/N)

[Stream]/PacketResend: enable packet retransmission with the given maximum number of
requests per block (n/N for disabled, an integer value otherwise)

[Stream]/GenDCExtraPackets: extra packets to use in GenDC container transmission (integer
value)

[Stream]/RdmaConnectionTimeout: define how long to wait for device acknowledge during
NetworkDirect+InfiniBand connection establishment (value in milliseconds)

[Stream]/ForceRdma: try to create a RDMA stream in the given list of IP addresses (a comma-
separated list of IP addresses)

Sample gigelink.ini

[Genapi]
MathParserMode=Auto

[Interface]
CameraSubnet=169.254.0.0/16
DiscoveryTimeout=2500
AllowBroadcastAck=n

[Stream]
UserFilterDriver=y
PacketResend=5

eGrabber Programming eGrabber AY niied vision

GenDCExtraPackets=2
RdmaConnectionTimeout=3500
ForceRdma=169.254.0.3,169.254.0.4

playlink.ini

e [Genapi]/MathParserMode: Configure the behavior of GenApi SwissKnife parser

e Standard: permissive mode that operates like the GenlCam reference implementation
(left associativity)

e Strict: evaluation of the formulas must be non ambiguous, using parentheses is required
when several logical operators are used at the same level

e Auto: same as Strict

Sample playlink.ini

[Genapi]
MathParserMode=Auto

playlink.cfg

Playlink configuration file

Playlink (playlink.cti) is a Euresys GenTL producer that turns Euresys Recorder

containers into GenTL data streams.

#

This config file allows you to configure playlink.cti.

Each line starting with an '#' is a comment line and is ignored.

Blank lines are ignored too.

Otherwise, each line maps a GenTL data stream to a Euresys Recorder container
path.

The GenTL hierarchy of the data stream is explicitly defined by the Interface,

Device and Stream module IDs.

The next line shows the syntax used to declare and configure the GenTL modules:

[{Interface name}/Device{id}/Stream0 = {Path to Euresys Recorder container}

- {Interface name} is to be replaced with the desired name.
Valid characters for the name of the interface are:

+ Latin letters (no diacritics)

+ Digits

+ The following special characters: '+, "-','(", "),
- {id} is to be replaced with the id of the device (only digits are allowed)

- {Path to Euresys Recorder container} is to be replaced with the actual path
to the Euresys Recorder container.

The path may contain any character except these ones:

+ Question mark:'?"

+ Carriage return: '\r'

+Linefeed:"\n'

An absolute path is expected.

- Since the stream name is fixed, there can only be one stream per device.

For example:
/My Interface/Device0/Stream0 = E:\Containers\foo

Will create an interface named "My Interface", a device named "Device0" and
a datastream named "StreamQ". The created stream will output buffers from

eGrabber Programming eGrabber KY hiieg vision

the Euresys Recorder container at "E:\Containers\foo"
An interface can contain one or more devices, e.g.:

/My (Interface)/Device42/Stream0=/mnt/containers/bar
/My (Interface)/Device666/Stream0 = /mnt/containers/baz

Each configuration line can also declare key-value attributes that further configure
the device.

Attributes are introduced by a '?' right after the path.

Each attribute is a key-value pair of the form {key}={value}.

Attributes are separated by a '&'.

Here is an example:

/Iface/Device0/Stream0 =
C:/con/te/partiro?PlaybackLoop=true&PlaybackFrameRateMode=auto&PlaybackFrameRateMultiplier=2

There exists many attributes and they expect values of different types:
"PlaybackLoop": {true, false}

"PlaybackMode": {container, chapter}

"PlaybackFrameRateMode": {auto, fixed}

"PlaybackFixedFrameRate": float

"PlaybackFrameRateMultiplier": float

"RewindOnStop": {true, false}

eGrabber Programming eGrabber AY niied vision

13. Definitions

Acronyms

CIC

Camera and Illumination Controller

CTI

Common Transport Interface

CXP

CoaXPress

EMVA

European Machine Vision Association

PFNC

Pixel Format Naming Convention

SFNC

Standard Features Naming Convention

Glossary

Buffer module

GenTL module that represents a memory buffer. Buffers must be announced to the data stream
that will fill them with image data.

Callback model

Defines when and where (in which thread) callback functions are executed.

One of CallbackOnDemand, CallbackSingleThread, CallbackMultiThread.

Camera and illumination controller

Part of Coaxlink card that controls a camera and its associated illumination devices.

Hosted in the device module.

CoaXPress

High speed digital interface standard that allows the transmission of data from a device (e.g., a
camera) to a host (e.g., a frame grabber inside a computer) over one or several coaxial cables.

http://www.coaxpress.com/

eGrabber Programming eGrabber AY niied vision

Common transport interface

GenTL producer.

Data stream module

GenTL module that handles buffers.

Device module

GenTL module that contains the frame grabber settings relating to the camera.
Parent of the data stream module.

Sibling of the remote device.

GenApi

The GenlCam standard that deals with camera and frame grabber configuration.

GenApi feature

Camera or frame grabber feature, defined in a register description.

Either a set/get parameter, or a command with side effects.

GenlCam

Set of EMVA standards. It consists of GenApi, GenTL, the SFNC and the PFNC.

GenTL

The GenlCam standard that deals with data transport. TL stands for Transport Layer.

GenTL producer

Software library that implements the GenTL API.

File with the cti extension (e.g., coaxlink.cti, grablink.cti, gigelink.cti, or playlink.cti).

Grabber

An EGrabber instance.

Info command

Numerical identifier used to query a specific piece of information from a GenTL module. Info
commands are defined either in the standard GenTL header file, or in a vendor-specific header
file (e.g., info commands specific to Coaxlink, Grablink, and Gigelink are defined in
include/GenTL_EuresysCustom.h).

Interface module

GenTL module that represents a frame grabber.

http://www.emva.org/
http://www.emva.org/wp-content/uploads/GenICam_SFNC_2_2.pdf
http://www.emva.org/wp-content/uploads/GenICam_PFNC_2_0.pdf
http://www.emva.org/wp-content/uploads/GenTL_v1_5.h
../../../IOdoc/egrabber-reference/_gen_t_l___euresys_custom_8h.html

eGrabber Programming eGrabber AY niied vision

Parent of the device module.

I/O toolbox

Part of Coaxlink card that controls digital I/O lines and implements tools such as rate
converters, delay lines, etc.

Hosted in the interface module.

Multi-bank camera

Camera composed of several independent CoaXPress sub-Devices usually organized as a master
sub-Device and one or more slave sub-Devices.

Register description

XML file mapping low-level hardware registers to camera or frame grabber features.

Remote device

Camera connected to a frame grabber.

The term remote is used to distinguish this from the GenTL device module.

Sub-grabber

Part of an EGrabber instance for a multi-bank camera.

A camera composed of N banks is operated via an EGrabber instance that internally uses N sub-
grabbers.

System

GenTL module that represents the GenTL producer.
Also known as TLSystem.

Parent of the interface module.

Timestamp

The time at which an event occurs.

For Coaxlink, Grablink, and Gigelink, timestamps are always 64-bit integers and are expressed as
the number of microseconds that have elapsed since the computer was started.

	1. Introduction
	2. GenApi
	3. GenTL
	4. EGenTL
	5. eGrabber
	6. Euresys GenApi scripts
	7. Euresys GenApi Extensions
	Bootstrap register helpers
	FileAccessControl helpers

	8. eGrabber for MultiCam users
	9. .NET assembly
	10. Python
	11. Sample programs
	12. GenTL producers configuration
	13. Definitions

